
Living Rev. Relativity, 6, (2003), 1
http://www.livingreviews.org/lrr-2003-1

L I V I N G REVIEWS

in relativity

Relativity in the Global Positioning System

Neil Ashby
Dept. of Physics, University of Colorado

Boulder, CO 80309–0390
U.S.A.

email: Neil.Ashby@colorado.edu
http://www.colorado.edu/physics/Web/directory/faculty/ashby_n.html

Accepted on 8 January 2003
Published on 28 January 2003

Abstract

The Global Positioning System (GPS) uses accurate, stable atomic clocks in satellites
and on the ground to provide world-wide position and time determination. These clocks
have gravitational and motional frequency shifts which are so large that, without carefully
accounting for numerous relativistic effects, the system would not work. This paper discusses
the conceptual basis, founded on special and general relativity, for navigation using GPS.
Relativistic principles and effects which must be considered include the constancy of the speed
of light, the equivalence principle, the Sagnac effect, time dilation, gravitational frequency
shifts, and relativity of synchronization. Experimental tests of relativity obtained with a GPS
receiver aboard the TOPEX/POSEIDON satellite will be discussed. Recently frequency jumps
arising from satellite orbit adjustments have been identified as relativistic effects. These will
be explained and some interesting applications of GPS will be discussed.
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Relativity in the Global Positioning System 5

1 Introduction

The Global Positioning System (GPS) can be described in terms of three principal “segments”: a
Space Segment, a Control Segment, and a User Segment. The Space Segment consists essentially
of 24 satellites carrying atomic clocks. (Spare satellites and spare clocks in satellites exist.) There
are four satellites in each of six orbital planes inclined at 55∘ with respect to earth’s equatorial
plane, distributed so that from any point on the earth, four or more satellites are almost always
above the local horizon. Tied to the clocks are timing signals that are transmitted from each
satellite. These can be thought of as sequences of events in spacetime, characterized by positions
and times of transmission. Associated with these events are messages specifying the transmission
events’ spacetime coordinates; below I will discuss the system of reference in which these coordi-
nates are given. Additional information contained in the messages includes an almanac for the
entire satellite constellation, information about satellite vehicle health, and information from which
Universal Coordinated Time as maintained by the U.S. Naval Observatory – UTC(USNO) – can
be determined.

The Control Segment is comprised of a number of ground-based monitoring stations, which
continually gather information from the satellites. These data are sent to a Master Control Station
in Colorado Springs, CO, which analyzes the constellation and projects the satellite ephemerides
and clock behaviour forward for the next few hours. This information is then uploaded into the
satellites for retransmission to users.

The User Segment consists of all users who, by receiving signals transmitted from the satellites,
are able to determine their position, velocity, and the time on their local clocks.

The GPS is a navigation and timing system that is operated by the United States Department of
Defense (DoD), and therefore has a number of aspects to it that are classified. Several organizations
monitor GPS signals independently and provide services from which satellite ephemerides and clock
behavior can be obtained. Accuracies in the neighborhood of 5–10 cm are not unusual. Carrier
phase measurements of the transmitted signals are commonly done to better than a millimeter.

GPS signals are received on earth at two carrier frequencies, L1 (154 × 10.23 MHz) and L2
(120 × 10.23 MHz). The L1 carrier is modulated by two types of pseudorandom noise codes, one
at 1.023 MHz – called the Coarse/Acquisition or C/A-code – and an encrypted one at 10.23 MHz
called the P-code. P-code receivers have access to both L1 and L2 frequencies and can correct
for ionospheric delays, whereas civilian users only have access to the C/A-code. There are thus
two levels of positioning service available in real time, the Precise Positioning Service utilizing
P-code, and the Standard Positioning Service using only C/A-code. The DoD has the capability
of dithering the transmitted signal frequencies and other signal characteristics, so that C/A-code
users would be limited in positioning accuracy to about ±100 meters. This is termed Selective
Availability, or SA. SA was turned off by order of President Clinton in May 2000.

The technological basis for GPS lies in extremely accurate, stable atomic clocks. Figure 1 gives
a plot of the Allan deviation for a high-performance Cesium clock, as a function of sample time
𝜏 . If an ensemble of clocks is initially synchronized, then when compared to each other after a
time 𝜏 , the Allan deviation provides a measure of the rms fractional frequency deviation among
the clocks due to intrinsic noise processes in the clocks. Frequency offsets and frequency drifts
are additional systematic effects which must be accounted for separately. Also on Figure 1 is an
Allan deviation plot for a Quartz oscillator such as is typically found in a GPS receiver. Quartz
oscillators usually have better short-term stability performance characteristics than Cesium clocks,
but after 100 seconds or so, Cesium has far better performance. In actual clocks there is a wide
range of variation around the nominal values plotted in Figure 1.

The plot for Cesium, however, characterizes the best orbiting clocks in the GPS system. What
this means is that after initializing a Cesium clock, and leaving it alone for a day, it should be
correct to within about 5 parts in 1014, or 4 nanoseconds. Relativistic effects are huge compared
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Figure 1: Typical Allan deviations of Cesium clocks and quartz oscillators, plotted as a function of
averaging time 𝜏 .

to this.
The purpose of this article is to explain how relativistic effects are accounted for in the GPS.

Although clock velocities are small and gravitational fields are weak near the earth, they give rise
to significant relativistic effects. These effects include first- and second-order Doppler frequency
shifts of clocks due to their relative motion, gravitational frequency shifts, and the Sagnac effect
due to earth’s rotation. If such effects are not accounted for properly, unacceptably large errors
in GPS navigation and time transfer will result. In the GPS one can find many examples of the
application of fundamental relativity principles. These are worth careful study. Also, experimental
tests of relativity can be performed with GPS, although generally speaking these are not at a level
of precision any better than previously existing tests.

The principles of position determination and time transfer in the GPS can be very simply
stated. Let there be four synchronized atomic clocks that transmit sharply defined pulses from
the positions r𝑗 at times 𝑡𝑗 , with 𝑗 = 1, 2, 3, 4 an index labelling the different transmission events.
Suppose that these four signals are received at position r at one and the same instant 𝑡. Then,
from the principle of the constancy of the speed of light,

𝑐2(𝑡− 𝑡𝑗)2 = |r− r𝑗 |2, 𝑗 = 1, 2, 3, 4. (1)

where the defined value of 𝑐 is exactly 299792458 m s−1. These four equations can be solved for
the unknown space-time coordinates {r, 𝑡} of the reception event. Hence, the principle of the
constancy of 𝑐 finds application as the fundamental concept on which the GPS is based. Timing
errors of one ns will lead to positioning errors of the order of 30 cm. Also, obviously, it is necessary
to specify carefully the reference frame in which the transmitter clocks are synchronized, so that
Eq. (1) is valid.

The timing pulses in question can be thought of as places in the transmitted wave trains
where there is a particular phase reversal of the circularly polarized electromagnetic signals. At
such places the electromagnetic field tensor passes through zero and therefore provides relatively
moving observers with sequences of events that they can agree on, at least in principle.
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2 Reference Frames and the Sagnac Effect

Almost all users of GPS are at fixed locations on the rotating earth, or else are moving very slowly
over earth’s surface. This led to an early design decision to broadcast the satellite ephemerides
in a model earth-centered, earth-fixed, reference frame (ECEF frame), in which the model earth
rotates about a fixed axis with a defined rotation rate, 𝜔E = 7.2921151467 × 10−5 rad s−1. This
reference frame is designated by the symbol WGS-84 (G873) [19, 3]. For discussions of relativity,
the particular choice of ECEF frame is immaterial. Also, the fact the the earth truly rotates about
a slightly different axis with a variable rotation rate has little consequence for relativity and I
shall not go into this here. I shall simply regard the ECEF frame of GPS as closely related to,
or determined by, the International Terrestrial Reference Frame established by the International
Bureau of Weights and Measures (BIPM) in Paris.

It should be emphasized that the transmitted navigation messages provide the user only with
a function from which the satellite position can be calculated in the ECEF as a function of the
transmission time. Usually, the satellite transmission times 𝑡𝑗 are unequal, so the coordinate
system in which the satellite positions are specified changes orientation from one measurement
to the next. Therefore, to implement Eqs. (1), the receiver must generally perform a different
rotation for each measurement made, into some common inertial frame, so that Eqs. (1) apply.
After solving the propagation delay equations, a final rotation must usually be performed into
the ECEF to determine the receiver’s position. This can become exceedingly complicated and
confusing. A technical note [10] discusses these issues in considerable detail.

Although the ECEF frame is of primary interest for navigation, many physical processes (such as
electromagnetic wave propagation) are simpler to describe in an inertial reference frame. Certainly,
inertial reference frames are needed to express Eqs. (1), whereas it would lead to serious error to
assert Eqs. (1) in the ECEF frame. A “Conventional Inertial Frame” is frequently discussed, whose
origin coincides with earth’s center of mass, which is in free fall with the earth in the gravitational
fields of other solar system bodies, and whose 𝑧-axis coincides with the angular momentum axis
of earth at the epoch J2000.0. Such a local inertial frame may be related by a transformation
of coordinates to the so-called International Celestial Reference Frame (ICRF), an inertial frame
defined by the coordinates of about 500 stellar radio sources. The center of this reference frame is
the barycenter of the solar system.

In the ECEF frame used in the GPS, the unit of time is the SI second as realized by the clock
ensemble of the U.S. Naval Observatory, and the unit of length is the SI meter. This is important
in the GPS because it means that local observations using GPS are insensitive to effects on the
scales of length and time measurements due to other solar system bodies, that are time-dependent.

Let us therefore consider the simplest instance of a transformation from an inertial frame, in
which the space-time is Minkowskian, to a rotating frame of reference. Thus, ignoring gravitational
potentials for the moment, the metric in an inertial frame in cylindrical coordinates is

− 𝑑𝑠2 = −(𝑐 𝑑𝑡)2 + 𝑑𝑟2 + 𝑟2𝑑𝜑2 + 𝑑𝑧2, (2)

and the transformation to a coordinate system {𝑡′, 𝑟′, 𝜑′, 𝑧′} rotating at the uniform angular rate
𝜔E is

𝑡 = 𝑡′, 𝑟 = 𝑟′, 𝜑 = 𝜑′ + 𝜔E𝑡′, 𝑧 = 𝑧′. (3)

This results in the following well-known metric (Langevin metric) in the rotating frame:

− 𝑑𝑠2 = −
(︂

1− 𝜔2
E𝑟′2

𝑐2

)︂
(𝑐𝑑𝑡′)2 + 2𝜔E𝑟′2𝑑𝜑′𝑑𝑡′ + (𝑑𝜎′)2, (4)

where the abbreviated expression (𝑑𝜎′)2 = (𝑑𝑟′)2+(𝑟′𝑑𝜑′)2+(𝑑𝑧′)2 for the square of the coordinate
distance has been used.
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The time transformation 𝑡 = 𝑡′ in Eqs. (3) is deceivingly simple. It means that in the rotating
frame the time variable 𝑡′ is really determined in the underlying inertial frame. It is an example
of coordinate time. A similar concept is used in the GPS.

Now consider a process in which observers in the rotating frame attempt to use Einstein syn-
chronization (that is, the principle of the constancy of the speed of light) to establish a network of
synchronized clocks. Light travels along a null worldline, so we may set 𝑑𝑠2 = 0 in Eq. (4). Also,
it is sufficient for this discussion to keep only terms of first order in the small parameter 𝜔E𝑟′/𝑐.
Then

(𝑐𝑑𝑡′)2 − 2𝜔E𝑟′2𝑑𝜑′(𝑐𝑑𝑡′)
𝑐

− (𝑑𝜎′)2 = 0, (5)

and solving for (𝑐𝑑𝑡′) yields

𝑐𝑑𝑡′ = 𝑑𝜎′ +
𝜔E𝑟′2𝑑𝜑′

𝑐
. (6)

The quantity 𝑟′2𝑑𝜑′/2 is just the infinitesimal area 𝑑𝐴′𝑧 in the rotating coordinate system swept
out by a vector from the rotation axis to the light pulse, and projected onto a plane parallel to the
equatorial plane. Thus, the total time required for light to traverse some path is∫︁

path

𝑑𝑡′ =
∫︁

path

𝑑𝜎′

𝑐
+

2𝜔E

𝑐2

∫︁
path

𝑑𝐴′𝑧. [light] (7)

Observers fixed on the earth, who were unaware of earth rotation, would use just
∫︀

𝑑𝜎′/𝑐 for
synchronizing their clock network. Observers at rest in the underlying inertial frame would say that
this leads to significant path-dependent inconsistencies, which are proportional to the projected
area encompassed by the path. Consider, for example, a synchronization process that follows
earth’s equator in the eastwards direction. For earth, 2𝜔E/𝑐2 = 1.6227 × 10−21 s m−2 and the
equatorial radius is 𝑎1 = 6,378,137 m, so the area is 𝜋𝑎2

1 = 1.27802× 1014 m2. Thus, the last term
in Eq. (7) is

2𝜔E

𝑐2

∫︁
path

𝑑𝐴′𝑧 = 207.4 ns. (8)

From the underlying inertial frame, this can be regarded as the additional travel time required by
light to catch up to the moving reference point. Simple-minded use of Einstein synchronization in
the rotating frame gives only

∫︀
𝑑𝜎′/𝑐, and thus leads to a significant error. Traversing the equator

once eastward, the last clock in the synchronization path would lag the first clock by 207.4 ns.
Traversing the equator once westward, the last clock in the synchronization path would lead the
first clock by 207.4 ns.

In an inertial frame a portable clock can be used to disseminate time. The clock must be moved
so slowly that changes in the moving clock’s rate due to time dilation, relative to a reference clock
at rest on earth’s surface, are extremely small. On the other hand, observers in a rotating frame
who attempt this, find that the proper time elapsed on the portable clock is affected by earth’s
rotation rate. Factoring Eq. (4), the proper time increment 𝑑𝜏 on the moving clock is given by

(𝑑𝜏)2 = (𝑑𝑠/𝑐)2 = 𝑑𝑡′2

[︃
1−

(︂
𝜔E𝑟′

𝑐

)︂2

− 2𝜔E𝑟′2𝑑𝜑′

𝑐2𝑑𝑡′
−

(︂
𝑑𝜎′

𝑐𝑑𝑡′

)︂2
]︃

. (9)

For a slowly moving clock, (𝑑𝜎′/𝑐𝑑𝑡′)2 ≪ 1, so the last term in brackets in Eq. (9) can be neglected.
Also, keeping only first order terms in the small quantity 𝜔E𝑟′/𝑐 yields

𝑑𝜏 = 𝑑𝑡′ − 𝜔E𝑟′2𝑑𝜑′

𝑐2
(10)
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which leads to ∫︁
path

𝑑𝑡′ =
∫︁

path

𝑑𝜏 +
2𝜔E

𝑐2

∫︁
path

𝑑𝐴′𝑧. [portable clock] (11)

This should be compared with Eq. (7). Path-dependent discrepancies in the rotating frame are
thus inescapable whether one uses light or portable clocks to disseminate time, while synchroniza-
tion in the underlying inertial frame using either process is self-consistent.

Eqs. (7) and (11) can be reinterpreted as a means of realizing coordinate time 𝑡′ = 𝑡 in the
rotating frame, if after performing a synchronization process appropriate corrections of the form
+2𝜔E

∫︀
path

𝑑𝐴′𝑧/𝑐2 are applied. It is remarkable how many different ways this can be viewed. For
example, from the inertial frame it appears that the reference clock from which the synchronization
process starts is moving, requiring light to traverse a different path than it appears to traverse in
the rotating frame. The Sagnac effect can be regarded as arising from the relativity of simultaneity
in a Lorentz transformation to a sequence of local inertial frames co-moving with points on the
rotating earth. It can also be regarded as the difference between proper times of a slowly moving
portable clock and a Master reference clock fixed on earth’s surface.

This was recognized in the early 1980s by the Consultative Committee for the Definition of
the Second and the International Radio Consultative Committee who formally adopted procedures
incorporating such corrections for the comparison of time standards located far apart on earth’s
surface. For the GPS it means that synchronization of the entire system of ground-based and
orbiting atomic clocks is performed in the local inertial frame, or ECI coordinate system [6].

GPS can be used to compare times on two earth-fixed clocks when a single satellite is in view
from both locations. This is the “common-view” method of comparison of Primary standards,
whose locations on earth’s surface are usually known very accurately in advance from ground-based
surveys. Signals from a single GPS satellite in common view of receivers at the two locations provide
enough information to determine the time difference between the two local clocks. The Sagnac
effect is very important in making such comparisons, as it can amount to hundreds of nanoseconds,
depending on the geometry. In 1984 GPS satellites 3, 4, 6, and 8 were used in simultaneous
common view between three pairs of earth timing centers, to accomplish closure in performing an
around-the-world Sagnac experiment. The centers were the National Bureau of Standards (NBS)
in Boulder, CO, Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, West Germany,
and Tokyo Astronomical Observatory (TAO). The size of the Sagnac correction varied from 240
to 350 ns. Enough data were collected to perform 90 independent circumnavigations. The actual
mean value of the residual obtained after adding the three pairs of time differences was 5 ns, which
was less than 2 percent of the magnitude of the calculated total Sagnac effect [4].
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3 GPS Coordinate Time and TAI

In the GPS, the time variable 𝑡′ = 𝑡 becomes a coordinate time in the rotating frame of the earth,
which is realized by applying appropriate corrections while performing synchronization processes.
Synchronization is thus performed in the underlying inertial frame in which self-consistency can
be achieved.

With this understanding, I next need to describe the gravitational fields near the earth due
to the earth’s mass itself. Assume for the moment that earth’s mass distribution is static, and
that there exists a locally inertial, non-rotating, freely falling coordinate system with origin at the
earth’s center of mass, and write an approximate solution of Einstein’s field equations in isotropic
coordinates:

− 𝑑𝑠2 = −
(︂

1 +
2𝑉

𝑐2

)︂
(𝑐𝑑𝑡)2 +

(︂
1− 2𝑉

𝑐2

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2). (12)

where {𝑟, 𝜃, 𝜑} are spherical polar coordinates and where 𝑉 is the Newtonian gravitational potential
of the earth, given approximately by:

𝑉 = −𝐺𝑀E

𝑟

[︂
1− 𝐽2

(︁𝑎1

𝑟

)︁2

𝑃2(cos 𝜃)
]︂

. (13)

In Eq. (13), 𝐺𝑀E = 3.986004418×1014 m3 s−2 is the product of earth’s mass times the Newtonian
gravitational constant, 𝐽2 = 1.0826300× 10−3 is earth’s quadrupole moment coefficient, and 𝑎1 =
6.3781370× 106 is earth’s equatorial radius1. The angle 𝜃 is the polar angle measured downward
from the axis of rotational symmetry; 𝑃2 is the Legendre polynomial of degree 2. In using Eq. (12),
it is an adequate approximation to retain only terms of first order in the small quantity 𝑉/𝑐2. Higher
multipole moment contributions to Eq. (13) have a very small effect for relativity in GPS.

One additional expression for the invariant interval is needed: the transformation of Eq. (12)
to a rotating, ECEF coordinate system by means of transformations equivalent to Eqs. (3). The
transformations for spherical polar coordinates are:

𝑡 = 𝑡′, 𝑟 = 𝑟′, 𝜃 = 𝜃′, 𝜑 = 𝜑′ + 𝜔E𝑡′. (14)

Upon performing the transformations, and retaining only terms of order 1/𝑐2, the scalar interval
becomes:

− 𝑑𝑠2 = −

[︃
1 +

2𝑉

𝑐2
−

(︂
𝜔E𝑟′ sin 𝜃′

𝑐

)︂2
]︃

(𝑐 𝑑𝑡′)2 + 2𝜔E𝑟′2 sin2 𝜃′𝑑𝜑′𝑑𝑡′

+
(︂

1− 2𝑉

𝑐2

)︂
(𝑑𝑟′2 + 𝑟′2𝑑𝜃′2 + 𝑟′2 sin2 𝜃′𝑑𝜑′2). (15)

To the order of the calculation, this result is a simple superposition of the metric, Eq. (12), with the
corrections due to rotation expressed in Eq. (4). The metric tensor coefficient 𝑔′00 in the rotating
frame is

𝑔′00 = −

[︃
1 +

2𝑉

𝑐2
−

(︂
𝜔E𝑟′ sin 𝜃′

𝑐

)︂2
]︃
≡ −

(︂
1 +

2Φ
𝑐2

)︂
, (16)

where Φ is the effective gravitational potential in the rotating frame, which includes the static
gravitational potential of the earth, and a centripetal potential term.

The Earth’s geoid. In Eqs. (12) and (15), the rate of coordinate time is determined by
atomic clocks at rest at infinity. The rate of GPS coordinate time, however, is closely related

1WGS-84 (G873) values of these constants are used in this article.
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Relativity in the Global Positioning System 11

to International Atomic Time (TAI), which is a time scale computed by the BIPM in Paris on
the basis of inputs from hundreds of primary time standards, hydrogen masers, and other clocks
from all over the world. In producing this time scale, corrections are applied to reduce the elapsed
proper times on the contributing clocks to earth’s geoid, a surface of constant effective gravitational
equipotential at mean sea level in the ECEF.

Universal Coordinated Time (UTC) is another time scale, which differs from TAI by a whole
number of leap seconds. These leap seconds are inserted every so often into UTC so that UTC
continues to correspond to time determined by earth’s rotation. Time standards organizations that
contribute to TAI and UTC generally maintain their own time scales. For example, the time scale
of the U.S. Naval Observatory, based on an ensemble of Hydrogen masers and Cs clocks, is denoted
UTC(USNO). GPS time is steered so that, apart from the leap second differences, it stays within
100 ns UTC(USNO). Usually, this steering is so successful that the difference between GPS time
and UTC(USNO) is less than about 40 ns. GPS equipment cannot tolerate leap seconds, as such
sudden jumps in time would cause receivers to lose their lock on transmitted signals, and other
undesirable transients would occur.

To account for the fact that reference clocks for the GPS are not at infinity, I shall consider
the rates of atomic clocks at rest on the earth’s geoid. These clocks move because of the earth’s
spin; also, they are at varying distances from the earth’s center of mass since the earth is slightly
oblate. In order to proceed one needs a model expression for the shape of this surface, and a value
for the effective gravitational potential on this surface in the rotating frame.

For this calculation, I use Eq. (15) in the ECEF. For a clock at rest on earth, Eq. (15) reduces
to

− 𝑑𝑠2 = −
(︂

1 +
2𝑉

𝑐2
− 𝜔2

E𝑟′2 sin2 𝜃′

𝑐2

)︂
(𝑐 𝑑𝑡′)2, (17)

with the potential 𝑉 given by Eq. (13). This equation determines the radius 𝑟′ of the model geoid
as a function of polar angle 𝜃′. The numerical value of Φ0 can be determined at the equator where
𝜃′ = 𝜋/2 and 𝑟′ = 𝑎1. This gives

Φ0

𝑐2
= −𝐺𝑀E

𝑎1𝑐2
− 𝐺𝑀E𝐽2

2𝑎1𝑐2
− 𝜔2

E𝑎2
1

2𝑐2

= −6.95348× 10−10 − 3.764× 10−13 − 1.203× 10−12

= −6.96927× 10−10. (18)

There are thus three distinct contributions to this effective potential: a simple 1/𝑟 contribution
due to the earth’s mass; a more complicated contribution from the quadrupole potential, and a
centripetal term due to the earth’s rotation. The main contribution to the gravitational potential
arises from the mass of the earth; the centripetal potential correction is about 500 times smaller,
and the quadrupole correction is about 2000 times smaller. These contributions have been divided
by 𝑐2 in the above equation since the time increment on an atomic clock at rest on the geoid can
be easily expressed thereby. In recent resolutions of the International Astronomical Union [1], a
“Terrestrial Time” scale (TT) has been defined by adopting the value Φ0/𝑐2 = 6.969290134×10−10.
Eq. (18) agrees with this definition to within the accuracy needed for the GPS.

From Eq. (15), for clocks on the geoid,

𝑑𝜏 = 𝑑𝑠/𝑐 = 𝑑𝑡′
(︂

1 +
Φ0

𝑐2

)︂
. (19)

Clocks at rest on the rotating geoid run slow compared to clocks at rest at infinity by about
seven parts in 1010. Note that these effects sum to about 10,000 times larger than the fractional
frequency stability of a high-performance Cesium clock. The shape of the geoid in this model can
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12 Neil Ashby

be obtained by setting Φ = Φ0 and solving Eq. (16) for 𝑟′ in terms of 𝜃′. The first few terms in a
power series in the variable 𝑥′ = sin 𝜃′ can be expressed as

𝑟′ = (6356742.025 + 21353.642 𝑥′2 + 39.832 𝑥′4 + 0.798 𝑥′6 + 0.003 𝑥′8) m. (20)

This treatment of the gravitational field of the oblate earth is limited by the simple model of the
gravitational field. Actually, what I have done is estimate the shape of the so-called “reference
ellipsoid”, from which the actual geoid is conventionally measured.

Better models can be found in the literature of geophysics [18, 9, 15]. The next term in
the multipole expansion of the earth’s gravity field is about a thousand times smaller than the
contribution from 𝐽2; although the actual shape of the geoid can differ from Eq. (20) by as much
as 100 meters, the effects of such terms on timing in the GPS are small. Incorporating up to 20
higher zonal harmonics in the calculation affects the value of Φ0 only in the sixth significant figure.

Observers at rest on the geoid define the unit of time in terms of the proper rate of atomic
clocks. In Eq. (19), Φ0 is a constant. On the left side of Eq. (19), 𝑑𝜏 is the increment of proper
time elapsed on a standard clock at rest, in terms of the elapsed coordinate time 𝑑𝑡. Thus, the
very useful result has emerged, that ideal clocks at rest on the geoid of the rotating earth all
beat at the same rate. This is reasonable since the earth’s surface is a gravitational equipotential
surface in the rotating frame. (It is true for the actual geoid whereas I have constructed a model.)
Considering clocks at two different latitudes, the one further north will be closer to the earth’s
center because of the flattening – it will therefore be more redshifted. However, it is also closer
to the axis of rotation, and going more slowly, so it suffers less second-order Doppler shift. The
earth’s oblateness gives rise to an important quadrupole correction. This combination of effects
cancels exactly on the reference surface.

Since all clocks at rest on the geoid beat at the same rate, it is advantageous to exploit this
fact to redefine the rate of coordinate time. In Eq. (12) the rate of coordinate time is defined by
standard clocks at rest at infinity. I want instead to define the rate of coordinate time by standard
clocks at rest on the surface of the earth. Therefore, I shall define a new coordinate time 𝑡′′ by
means of a constant rate change:

𝑡′′ = (1 + Φ0/𝑐2)𝑡′ = (1 + Φ0/𝑐2)𝑡. (21)

The correction is about seven parts in 1010 (see Eq. (18)).
When this time scale change is made, the metric of Eq. (15) in the earth-fixed rotating frame

becomes

− 𝑑𝑠2 = −
(︂

1 +
2(Φ− Φ0)

𝑐2

)︂
(𝑐𝑑𝑡′′)2 + 2𝜔E𝑟′2 sin2 𝜃′𝑑𝜑′𝑑𝑡′′

+
(︂

1− 2𝑉

𝑐2

)︂
(𝑑𝑟′2 + 𝑟′2𝑑𝜃′2 + 𝑟′2 sin2 𝜃′𝑑𝜑′2), (22)

where only terms of order 𝑐−2 have been retained. Whether I use 𝑑𝑡′ or 𝑑𝑡′′ in the Sagnac cross
term makes no difference since the Sagnac term is very small anyway. The same time scale change
in the non-rotating ECI metric, Eq. (12), gives

− 𝑑𝑠2 = −
(︂

1 +
2(𝑉 − Φ0)

𝑐2

)︂
(𝑐𝑑𝑡′′)2 +

(︂
1− 2𝑉

𝑐2

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2). (23)

Eqs. (22) and Eq. (23) imply that the proper time elapsed on clocks at rest on the geoid (where
Φ = Φ0) is identical with the coordinate time 𝑡′′. This is the correct way to express the fact that
ideal clocks at rest on the geoid provide all of our standard reference clocks.
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Relativity in the Global Positioning System 13

4 The Realization of Coordinate Time

We are now able to address the real problem of clock synchronization within the GPS. In the
remainder of this paper I shall drop the primes on 𝑡′′ and just use the symbol 𝑡, with the un-
derstanding that unit of this time is referenced to UTC(USNO) on the rotating geoid, but with
synchronization established in an underlying, locally inertial, reference frame. The metric Eq. (23)
will henceforth be written

− 𝑑𝑠2 = −
(︂

1 +
2(𝑉 − Φ0)

𝑐2

)︂
(𝑐𝑑𝑡)2 +

(︂
1− 2𝑉

𝑐2

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2). (24)

The difference (𝑉 −Φ0) that appears in the first term of Eq. (24) arises because in the underlying
earth-centered locally inertial (ECI) coordinate system in which Eq. (24) is expressed, the unit of
time is determined by moving clocks in a spatially-dependent gravitational field.

It is obvious that Eq. (24) contains within it the well-known effects of time dilation (the apparent
slowing of moving clocks) and frequency shifts due to gravitation. Due to these effects, which
have an impact on the net elapsed proper time on an atomic clock, the proper time elapsing on
the orbiting GPS clocks cannot be simply used to transfer time from one transmission event to
another. Path-dependent effects must be accounted for.

On the other hand, according to General Relativity, the coordinate time variable 𝑡 of Eq. (24)
is valid in a coordinate patch large enough to cover the earth and the GPS satellite constellation.
Eq. (24) is an approximate solution of the field equations near the earth, which include the gravi-
tational fields due to earth’s mass distribution. In this local coordinate patch, the coordinate time
is single-valued. (It is not unique, of course, because there is still gauge freedom, but Eq. (24)
represents a fairly simple and reasonable choice of gauge.) Therefore, it is natural to propose that
the coordinate time variable 𝑡 of Eqs. (24) and (22) be used as a basis for synchronization in the
neighborhood of the earth.

To see how this works for a slowly moving atomic clock, solve Eq. (24) for 𝑑𝑡 as follows. First
factor out (𝑐𝑑𝑡)2 from all terms on the right-hand side:

− 𝑑𝑠2 = −
[︂
1 +

2(𝑉 − Φ0)
𝑐2

−
(︂

1− 2𝑉

𝑐2

)︂
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2

(𝑐𝑑𝑡)2

]︂
(𝑐𝑑𝑡)2. (25)

I simplify by writing the velocity in the ECI coordinate system as

𝑣2 =
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2

𝑑𝑡2
. (26)

Only terms of order 𝑐−2 need be kept, so the potential term modifying the velocity term can be
dropped. Then, upon taking a square root, the proper time increment on the moving clock is
approximately

𝑑𝜏 = 𝑑𝑠/𝑐 =
[︂
1 +

(𝑉 − Φ0)
𝑐2

− 𝑣2

2𝑐2

]︂
𝑑𝑡. (27)

Finally, solving for the increment of coordinate time and integrating along the path of the atomic
clock, ∫︁

path

𝑑𝑡 =
∫︁

path

𝑑𝜏

[︂
1− (𝑉 − Φ0)

𝑐2
+

𝑣2

2𝑐2

]︂
. (28)

The relativistic effect on the clock, given in Eq. (27), is thus corrected by Eq. (28).
Suppose for a moment there were no gravitational fields. Then one could picture an underlying

non-rotating reference frame, a local inertial frame, unattached to the spin of the earth, but with
its origin at the center of the earth. In this non-rotating frame, a fictitious set of standard clocks
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14 Neil Ashby

is introduced, available anywhere, all of them being synchronized by the Einstein synchronization
procedure, and running at agreed upon rates such that synchronization is maintained. These clocks
read the coordinate time 𝑡. Next, one introduces the rotating earth with a set of standard clocks
distributed around upon it, possibly roving around. One applies to each of the standard clocks
a set of corrections based on the known positions and motions of the clocks, given by Eq. (28).
This generates a “coordinate clock time” in the earth-fixed, rotating system. This time is such
that at each instant the coordinate clock agrees with a fictitious atomic clock at rest in the local
inertial frame, whose position coincides with the earth-based standard clock at that instant. Thus,
coordinate time is equivalent to time that would be measured by standard clocks at rest in the
local inertial frame [7].

When the gravitational field due to the earth is considered, the picture is only a little more
complicated. There still exists a coordinate time that can be found by computing a correction for
gravitational redshift, given by the first correction term in Eq. (28).
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Relativity in the Global Positioning System 15

5 Relativistic Effects on Satellite Clocks

For atomic clocks in satellites, it is most convenient to consider the motions as they would be
observed in the local ECI frame. Then the Sagnac effect becomes irrelevant. (The Sagnac effect
on moving ground-based receivers must still be considered.) Gravitational frequency shifts and
second-order Doppler shifts must be taken into account together. In this section I shall discuss in
detail these two relativistic effects, using the expression for the elapsed coordinate time, Eq. (28).
The term Φ0 in Eq. (28) includes the scale correction needed in order to use clocks at rest on
the earth’s surface as references. The quadrupole contributes to Φ0 in the term −𝐺𝑀E𝐽2/2𝑎1 in
Eq. (28); there it contributes a fractional rate correction of −3.76 × 10−13. This effect must be
accounted for in the GPS. Also, 𝑉 is the earth’s gravitational potential at the satellite’s position.
Fortunately, the earth’s quadrupole potential falls off very rapidly with distance, and up until
very recently its effect on satellite vehicle (SV) clock frequency has been neglected. This will
be discussed in a later section; for the present I only note that the effect of earth’s quadrupole
potential on SV clocks is only about one part in 1014, and I neglect it for the moment.

Satellite orbits. Let us assume that the satellites move along Keplerian orbits. This is a good
approximation for GPS satellites, but poor if the satellites are at low altitude. This assumption
yields relations with which to simplify Eq. (28). Since the quadrupole (and higher multipole)
parts of the earth’s potential are neglected, in Eq. (28) the potential is 𝑉 = −𝐺𝑀E/𝑟. Then the
expressions can be evaluated using what is known about the Newtonian orbital mechanics of the
satellites. Denote the satellite’s orbit semimajor axis by 𝑎 and eccentricity by 𝑒. Then the solution
of the orbital equations is as follows [13]: The distance 𝑟 from the center of the earth to the satellite
in ECI coordinates is

𝑟 = 𝑎(1− 𝑒2)/(1 + 𝑒 cos 𝑓). (29)

The angle 𝑓 , called the true anomaly, is measured from perigee along the orbit to the satellite’s
instantaneous position. The true anomaly can be calculated in terms of another quantity 𝐸 called
the eccentric anomaly, according to the relationships

cos 𝑓 =
cos 𝐸 − 𝑒

1− 𝑒 cos 𝐸
,

sin 𝑓 =
√︀

1− 𝑒2
sin 𝐸

1− 𝑒 cos 𝐸
.

(30)

Then, another way to write the radial distance 𝑟 is

𝑟 = 𝑎(1− 𝑒 cos 𝐸). (31)

To find the eccentric anomaly 𝐸, one must solve the transcendental equation

𝐸 − 𝑒 sin 𝐸 =

√︂
𝐺𝑀E

𝑎3
(𝑡− 𝑡p), (32)

where 𝑡p is the coordinate time of perigee passage.
In Newtonian mechanics, the gravitational field is a conservative field and total energy is con-

served. Using the above equations for the Keplerian orbit, one can show that the total energy per
unit mass of the satellite is

1
2
𝑣2 − 𝐺𝑀E

𝑟
= −𝐺𝑀E

2𝑎
. (33)

If I use Eq. (33) for 𝑣2 in Eq. (28), then I get the following expression for the elapsed coordinate
time on the satellite clock:

Δ𝑡 =
∫︁

path

𝑑𝜏

[︂
1 +

3𝐺𝑀E

2𝑎𝑐2
+

Φ0

𝑐2
− 2𝐺𝑀E

𝑐2

(︂
1
𝑎
− 1

𝑟

)︂]︂
. (34)
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16 Neil Ashby

The first two constant rate correction terms in Eq. (34) have the values:

3𝐺𝑀E

2𝑎𝑐2
+

Φ0

𝑐2
= +2.5046× 10−10 − 6.9693× 10−10 = −4.4647× 10−10. (35)

The negative sign in this result means that the standard clock in orbit is beating too fast, primarily
because its frequency is gravitationally blueshifted. In order for the satellite clock to appear to
an observer on the geoid to beat at the chosen frequency of 10.23 MHz, the satellite clocks are
adjusted lower in frequency so that the proper frequency is:[︀

1− 4.4647× 10−10
]︀
× 10.23 MHz = 10.229 999 995 43 MHz. (36)

This adjustment is accomplished on the ground before the clock is placed in orbit.
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Figure 2: Net fractional frequency shift of a clock in a circular orbit.

Figure 2 shows the net fractional frequency offset of an atomic clock in a circular orbit, which is
essentially the left side of Eq. (35) plotted as a function of orbit radius 𝑎, with a change of sign. Five
sources of relativistic effects contribute in Figure 2. The effects are emphasized for several different
orbit radii of particular interest. For a low earth orbiter such as the Space Shuttle, the velocity is
so great that slowing due to time dilation is the dominant effect, while for a GPS satellite clock,
the gravitational blueshift is greater. The effects cancel at 𝑎 ≈ 9545 km. The Global Navigation
Satellite System GALILEO, which is currently being designed under the auspices of the European
Space Agency, will have orbital radii of approximately 30,000 km.

There is an interesting story about this frequency offset. At the time of launch of the NTS-2
satellite (23 June 1977), which contained the first Cesium atomic clock to be placed in orbit, it was
recognized that orbiting clocks would require a relativistic correction, but there was uncertainty
as to its magnitude as well as its sign. Indeed, there were some who doubted that relativistic
effects were truths that would need to be incorporated [5]! A frequency synthesizer was built into
the satellite clock system so that after launch, if in fact the rate of the clock in its final orbit was
that predicted by general relativity, then the synthesizer could be turned on, bringing the clock
to the coordinate rate necessary for operation. After the Cesium clock was turned on in NTS-2,
it was operated for about 20 days to measure its clock rate before turning on the synthesizer [11].
The frequency measured during that interval was +442.5 parts in 1012 compared to clocks on the
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ground, while general relativity predicted +446.5 parts in 1012. The difference was well within the
accuracy capabilities of the orbiting clock. This then gave about a 1% verification of the combined
second-order Doppler and gravitational frequency shift effects for a clock at 4.2 earth radii.

Additional small frequency offsets can arise from clock drift, environmental changes, and other
unavoidable effects such as the inability to launch the satellite into an orbit with precisely the
desired semimajor axis. The navigation message provides satellite clock frequency corrections for
users so that in effect, the clock frequencies remain as close as possible to the frequency of the U.S.
Naval Observatory’s reference clock ensemble. Because of such effects, it would now be difficult to
use GPS clocks to measure relativistic frequency shifts.

When GPS satellites were first deployed, the specified factory frequency offset was slightly in
error because the important contribution from earth’s centripetal potential (see Eq. (18) had been
inadvertently omitted at one stage of the evaluation. Although GPS managers were made aware
of this error in the early 1980s, eight years passed before system specifications were changed to
reflect the correct calculation [2]. As understanding of the numerous sources of error in the GPS
slowly improved, it eventually made sense to incorporate the correct relativistic calculation. It
has become common practice not to apply such offsets to Rubidium clocks as these are subject to
unpredictable frequency jumps during launch. Instead, after such clocks are placed in orbit their
frequencies are measured and the actual frequency corrections needed are incorporated in the clock
correction polynomial that accompanies the navigation message.

The eccentricity correction. The last term in Eq. (34) may be integrated exactly by using
the following expression for the rate of change of eccentric anomaly with time, which follows by
differentiating Eq. (32):

𝑑𝐸

𝑑𝑡
=

√︀
𝐺𝑀E/𝑎3

1− 𝑒 cos 𝐸
. (37)

Also, since a relativistic correction is being computed, 𝑑𝑠/𝑐 ≃ 𝑑𝑡, so∫︁ [︂
2𝐺𝑀E

𝑐2

(︂
1
𝑟
− 1

𝑎

)︂]︂
𝑑𝑠

𝑐
≃ 2𝐺𝑀E

𝑐2

∫︁ (︂
1
𝑟
− 1

𝑎

)︂
𝑑𝑡

=
2𝐺𝑀E

𝑎𝑐2

∫︁
𝑑𝑡

(︂
𝑒 cos 𝐸

1− 𝑒 cos 𝐸

)︂
=

2
√

𝐺𝑀E𝑎

𝑐2
𝑒 (sin 𝐸 − sin 𝐸0)

= +
2
√

𝐺𝑀E𝑎

𝑐2
𝑒 sin 𝐸 + constant. (38)

The constant of integration in Eq. (38) can be dropped since this term is lumped with other clock
offset effects in the Kalman filter computation of the clock correction model. The net correction
for clock offset due to relativistic effects that vary in time is

Δ𝑡r = +4.4428× 10−10𝑒
√

𝑎 sin 𝐸
s√
m

. (39)

This correction must be made by the receiver; it is a correction to the coordinate time as transmitted
by the satellite. For a satellite of eccentricity 𝑒 = 0.01, the maximum size of this term is about
23 ns. The correction is needed because of a combination of effects on the satellite clock due to
gravitational frequency shift and second-order Doppler shift, which vary due to orbit eccentricity.

Eq. (39) can be expressed without approximation in the alternative form

Δ𝑡r = +
2r · v

𝑐2
, (40)
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where r and v are the position and velocity of the satellite at the instant of transmission. This
may be proved using the expressions (30, 31, 32) for the Keplerian orbits of the satellites. This
latter form is usually used in implementations of the receiver software.

It is not at all necessary, in a navigation satellite system, that the eccentricity correction be
applied by the receiver. It appears that the clocks in the GLONASS satellite system do have
this correction applied before broadcast. In fact historically, this was dictated in the GPS by the
small amount of computing power available in the early GPS satellite vehicles. It would actually
make more sense to incorporate this correction into the time broadcast by the satellites; then
the broadcast time events would be much closer to coordinate time – that is, GPS system time.
It may now be too late to reverse this decision because of the investment that many dozens of
receiver manufacturers have in their products. However, it does mean that receivers are supposed
to incorporate the relativity correction; therefore, if appropriate data can be obtained in raw form
from a receiver one can measure this effect. Such measurements are discussed next.
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6 TOPEX/POSEIDON Relativity Experiment

A report distributed by the Aerospace Corporation [14] has claimed that the correction expressed
in Eqs. (38) and (39) would not be valid for a highly dynamic receiver – e.g., one in a highly
eccentric orbit. This is a conceptual error, emanating from an apparently official source, which
would have serious consequences. The GPS modernization program involves significant redesign
and remanufacturing of the Block IIF satellites, as well as a new generation of satellites that are now
being deployed – the Block IIR replenishment satellites. These satellites are capable of autonomous
operation, that is, they can be operated independently of the ground-based control segment for
up to 180 days. They are to accomplish this by having receivers on board that determine their
own position and time by listening to the other satellites that are in view. If the conceptual basis
for accounting for relativity in the GPS, as it has been explained above, were invalid, the costs of
opening up these satellites and reprogramming them would be astronomical.

There has been therefore considerable controversy about this issue. As a consequence, it was
proposed by William Feess of the Aerospace Corporation that a measurement of this effect be
made using the receiver on board the TOPEX satellite. The TOPEX satellite carries an advanced,
six-channel GPS receiver. With six data channels available, five of the channels can be used to
determine the bias on the local oscillator of the TOPEX receiver with some redundancy, and data
from the sixth channel can be used to measure the eccentricity effect on the sixth SV clock. Here
I present some preliminary results of these measurements, which are to my knowledge the only
explicit measurements of the periodic part of the combined relativistic effects of time dilation and
gravitational frequency shift on an orbiting receiver.

A brief description of the pseudorange measurement made by a receiver is needed here before
explaining the TOPEX data. Many receivers work by generating a replica of the coded signal
emanating from the transmitter. This replica, which is driven through a feedback shift register at
a rate matching the Doppler-shifted incoming signal, is correlated with the incoming signal. The
transmitted coordinate time can be identified in terms of a particular phase reversal at a particular
point within the code train of the signal. When the correlator in the receiver is locked onto the
incoming signal, the time delay between the transmission event and the arrival time, as measured
on the local clock, can be measured at any chosen instant.

Let the time as transmitted from the 𝑗th satellite be denoted by 𝑡′𝑗 . After correcting for the
eccentricity effect, the GPS time of transmission would be 𝑡′𝑗 + (Δ𝑡r)𝑗 . Because of SA (which was
in effect for the data that were chosen), frequency offsets and frequency drifts, the satellite clock
may have an additional error 𝑏𝑗 so that the true GPS transmission time is 𝑡𝑗 = 𝑡′𝑗 + (Δ𝑡r)𝑗 − 𝑏𝑗 .

Now the local clock, which is usually a free-running oscillator subject to various noise and drift
processes, can be in error by a large amount. Let the measured reception time be 𝑡′R and the true
GPS time of reception be 𝑡R = 𝑡′R− 𝑏R. The possible existence of this local clock bias is the reason
why measurements from four satellites are needed for navigation, as from four measurements the
three components of the receiver’s position vector, and the local clock bias, can be determined.
The raw difference between the time of reception of the time tag from the satellite, and the time of
transmission, multiplied by 𝑐, is an estimate of the geometric range between satellite and receiver
called the pseudorange [22]:

𝜌𝑗 = 𝑐(𝑡′R − 𝑡′𝑗) = 𝑐 [(𝑡R + 𝑏R)− (𝑡𝑗 + 𝑏𝑗 − (Δ𝑡r)𝑗)] . (41)

On the other hand the true range between satellite and receiver is

|rR(𝑡R)− r𝑗(𝑡𝑗)| = 𝑐(𝑡R − 𝑡𝑗). (42)

Combining Eqs. (41)and (42) yields the measurement equation for this experiment:

|rR(𝑡R)− r𝑗(𝑡𝑗)| − 𝜌𝑗 + 𝑐𝑏R − 𝑐𝑏𝑗 + 𝑐(Δ𝑡r)𝑗 = 0. (43)
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The purpose of the TOPEX satellite is to measure the height of the sea. This satellite has a six-
channel receiver on board with a very good quartz oscillator to provide the time reference. A radar
altimeter measures the distance of the satellite from the surface of the sea, but such measurements
play no role in the present experiment. The TOPEX satellite has orbit radius 7,714 km, an orbital
period of about 6745 seconds, and an orbital inclination of 66.06∘ to earth’s equatorial plane.
Except for perturbations due to earth’s quadrupole moment, the orbit is very nearly circular,
with eccentricity being only 0.000057. The TOPEX satellite is almost ideal for analysis of this
relativity effect. The trajectories of the TOPEX and GPS satellites were determined independently
of the on-board clocks, by means of Doppler tracking from ≈ 100 stations maintained by the Jet
Propulsion Laboratory (JPL).

The receiver is a dual frequency C/A- and P-code receiver from which both code data and
carrier phase data were obtained. The dual-frequency measurements enabled us to correct the
propagation delay times for electron content in the ionosphere. Close cooperation was given by
JPL and by William Feess in providing the dual-frequency measurements, which are ordinarily
denied to civilian users, and in removing the effect of SA at time points separated by 300 seconds
during the course of the experiment.

The following data were provided through the courtesy of Yoaz Bar-Sever of JPL for October 22–
23, 1995:

∙ ECI center-of-mass position and velocity vectors for 25 satellites, in the J2000 Coordinate
system with times in UTC. Data rate is every 15 minutes; accuracy quoted is 10 cm radial,
30 cm horizontal.

∙ ECI position and velocity vectors for the TOPEX antenna phase center. Data rate is every
minute in UTC; accuracy quoted is 3 cm radial and 10 cm horizontal.

∙ GPS satellite clock data for 25 satellites based on ground system observations. Data rate is
every 5 minutes, in GPS time; accuracy ranges between 5 and 10 cm.

∙ TOPEX dual frequency GPS receiver measurements of pseudorange and carrier phase for 25
satellites, a maximum of six at any one time. The data rate is every 10 seconds, in GPS
time.

During this part of 1995, GPS time was ahead of UTC by 10 seconds. GPS cannot tolerate
leap seconds so whenever a leap second is inserted in UTC, UTC falls farther behind GPS time.
This required high-order interpolation on the orbit files to obtain positions and velocities at times
corresponding to times given, every 300 seconds, in the GPS clock data files. When this was done
independently by William Feess and myself we agreed typically to within a millimeter in satellite
positions.

The L1 and L2 carrier phase data was first corrected for ionospheric delay. Then the corrected
carrier phase data was used to smooth the pseudorange data by weighted averaging. SA was com-
pensated in the clock data by courtesy of William Feess. Basically, the effect of SA is contained in
both the clock data and in the pseudorange data and can be eliminated by appropriate subtraction.
Corrections for the offset of the GPS SV antenna phase centers from the SV centers of mass were
also incorporated.

The determination of the TOPEX clock bias is obtained by rearranging Eq. (43):

|rR(𝑡R)− r𝑗(𝑡𝑗)| − 𝜌𝑗 − 𝑐𝑏𝑗 + 𝑐Δ𝑡r = −𝑐𝑏R. (44)

Generally, at each time point during the experiment, observations were obtained from six (some-
times five) satellites. The geometric range, the first term in Eq. (44), was determined by JPL
from independent Doppler tracking of both the GPS constellation and the TOPEX satellite. The
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pseudorange was directly measured by the receiver, and clock models provided the determination
of the clock biases 𝑐𝑏𝑗 in the satellites. The relativity correction for each satellite can be calculated
directly from the given GPS satellite orbits. Because the receiver is a six-channel receiver, there
is sufficient redundancy in the measurements to obtain good estimates of the TOPEX clock bias
and the rms error in this bias due to measurement noise. The resulting clock bias is plotted in
Figure 3.
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Figure 3: TOPEX clock bias in meters determined from 1,571 observations.

The rms deviation from the mean of the TOPEX clock biases is plotted in Figure 4 as a function
of time. The average rms error is 29 cm, corresponding to about one ns of propagation delay. Much
of this variation can be attributed to multipath effects.

Figure 3 shows an overall frequency drift, accompanied by frequency adjustments and a large
periodic variation with period equal to the orbital period. Figure 3 gives our best estimate of
the TOPEX clock bias. This may now be used to measure the eccentricity effects by rearranging
Eq. (43):

|rR(𝑡R)− r𝑗(𝑡𝑗)| − 𝜌𝑗 − 𝑐𝑏𝑗 + 𝑐𝑏R = −𝑐Δ𝑡r. (45)

Strictly speaking, in finding the eccentricity effect this way for a particular satellite, one should not
include data from that satellite in the determination of the clock bias. One can show, however, that
the penalty for this is simply to increase the rms error by a factor of 6/5, to 35 cm. Figure 4 plots
the rms errors in the TOPEX clock bias determination of Figure 3. Figure 5 shows the measured
eccentricity effect for SV nr. 13, which has the largest eccentricity of the satellites that were tracked,
𝑒 = 0.01486. The solid curve in Figure 5 is the theoretically predicted effect, from Eq. (39). While
the agreement is fairly good, one can see some evidence of systematic bias during particular passes,
where the rms error (plotted as vertical lines on the measured dots) is significantly smaller than
the discrepancies between theory and experiment. For this particular satellite, the rms deviation
between theory and experiment is 22 cm, which is about 2.2% of the maximum magnitude of the
effect, 10.2 m.

Similar plots were obtained for 25 GPS satellites that were tracked during this experiment.
Rather than show them one by one, it is interesting to plot them on the same graph by dividing
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Figure 4: Rms deviation from mean of TOPEX clock bias determinations.
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Figure 5: Comparison of predicted and measured eccentricity effect for SV nr. 13.
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Figure 6: Generic eccentricity effect for five satellites.

the calculated and measured values by eccentricity 𝑒, while translating the time origin so that
in each case time is measured from the instant of perigee passage. We plot the effects, not the
corrections. In this way, Figure 6 combines the eccentricity effects for the five satellites with
the largest eccentricities. These are SV’s nr. 13, 21, 27, 23, and 26. In Figure 6 the systematic
deviations between theory and experiment tend to occur for one satellite during a pass; this “pass
bias” might be removable if we understood better what the cause of it is. As it stands, the
agreement between theory and experiment is within about 2.5%.
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7 Doppler Effect

Since orbiting clocks have had their rate adjusted so that they beat coordinate time, and since
responsibility for correcting for the periodic relativistic effect due to eccentricity has been delegated
to receivers, one must take extreme care in discussing the Doppler effect for signals transmitted
from satellites. Even though second-order Doppler effects have been accounted for, for earth-fixed
users there will still be a first-order (longitudinal) Doppler shift, which has to be dealt with by
receivers. As is well known, in a static gravitational field coordinate frequency is conserved during
propagation of an electromagnetic signal along a null geodesic. If one takes into account only the
monopole and quadrupole contributions to earth’s gravitational field, then the field is static and
one can exploit this fact to discuss the Doppler effect.

Consider the transmission of signals from rate-adjusted transmitters orbiting on GPS satellites.
Let the gravitational potential and velocity of the satellite be 𝑉 (r𝑗) ≡ 𝑉𝑗 , and v𝑗 , respectively. Let
the frequency of the satellite transmission, before the rate adjustment is done, be 𝑓0 = 10.23 MHz.
After taking into account the rate adjustment discussed previously, it is straightforward to show
that for a receiver of velocity vR and gravitational potential 𝑉R (in ECI coordinates), the received
frequency is

𝑓R = 𝑓0

[︂
1 +

−𝑉R + v2
R/2 + Φ0 + 2𝐺𝑀E/𝑎 + 2𝑉𝑗

𝑐2

]︂
(1−N · vR/𝑐)
(1−N · v𝑗/𝑐)

, (46)

where N is a unit vector in the propagation direction in the local inertial frame. For a receiver
fixed on the earth’s rotating geoid, this reduces to

𝑓R = 𝑓0

[︂
1 +

2𝐺𝑀E

𝑐2

(︂
1
𝑎
− 1

𝑟

)︂]︂
(1−N · vR/𝑐)
(1−N · v𝑗/𝑐)

. (47)

The correction term in square brackets gives rise to the eccentricity effect. The longitudinal Doppler
shift factors are not affected by these adjustments; they will be of order 10−5 while the eccentricity
effect is of order 𝑒× 10−10.
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8 Crosslink Ranging

Consider next the process of transferring coordinate time from one satellite clock to another by
direct exchange of signals. This will be important when “Autonav” is implemented. The standard
atomic clock in the transmitter satellite suffers a rate adjustment, and an eccentricity correction
to get the coordinate time. Then a signal is sent to the second satellite which requires calculating
a coordinate time of propagation possibly incorporating a relativistic time delay. There is then
a further transformation of rate and another “𝑒 sin 𝐸” correction to get the atomic time on the
receiving satellite’s clock. So that the rate adjustment does not introduce confusion into this
analysis, I shall assume the rate adjustments are already accounted for and use the subscript ‘S’
to denote coordinate time measurements using rate-adjusted satellite clocks.

Then, let a signal be transmitted from satellite nr. 𝑖, at position r𝑖 and having velocity v𝑖 in
ECI coordinates, at satellite clock time 𝑇

(𝑖)
S , to satellite nr. 𝑗, at position r𝑗 and having velocity

v𝑗 . The coordinate time at which this occurs, apart from a constant offset, from Eq. (38), will be

𝑇 (𝑖) = 𝑇
(𝑖)
S +

2
√

𝐺𝑀𝑎𝑖

𝑐2
𝑒𝑖 sin 𝐸𝑖. (48)

The coordinate time elapsed during propagation of the signal to the receiver in satellite nr. 𝑗 is in
first approximation 𝑙/𝑐, where 𝑙 is the distance between transmitter at the instant of transmission,
and receiver at the instant of reception: Δ𝑇 = 𝑇 (𝑗)−𝑇 (𝑖) = 𝑙/𝑐. The Shapiro time delay corrections
to this will be discussed in the next section. Finally, the coordinate time of arrival of the signal is
related to the time on the receiving satellite’s adjusted clock by the inverse of Eq. (48):

𝑇
(𝑗)
S = 𝑇 (𝑗) −

2
√︀

𝐺𝑀𝑎𝑗

𝑐2
𝑒𝑗 sin 𝐸𝑗 . (49)

Collecting these results, we get

𝑇
(𝑗)
S = 𝑇

(𝑖)
S +

𝑙

𝑐
−

2
√︀

𝐺𝑀𝑎𝑗

𝑐2
𝑒𝑗 sin 𝐸𝑗 +

2
√

𝐺𝑀𝑎𝑖

𝑐2
𝑒𝑖 sin 𝐸𝑖. (50)

In Eq. (50) the distance 𝑙 is the actual propagation distance, in ECI coordinates, of the signal. If
this is expressed instead in terms of the distance |Δr| = |r𝑗(𝑡𝑖)− r𝑖(𝑡𝑖)| between the two satellites
at the instant of transmission, then

𝑙 = |Δr|+ Δr · v𝑗

𝑐
. (51)

The extra term accounts for motion of the receiver through the inertial frame during signal prop-
agation. Then Eq. (50) becomes

𝑇
(𝑗)
S = 𝑇

(𝑖)
S +

|Δr|
𝑐

− 2
√

𝐺𝑀𝑎2

𝑐2
𝑒𝑗 sin 𝐸𝑗 +

2
√

𝐺𝑀𝑎𝑖

𝑐2
𝑒𝑖 sin 𝐸𝑖 +

Δr · v𝑗

𝑐2
. (52)

This result contains all the relativistic corrections that need to be considered for direct time
transfer by transmission of a time-tagged pulse from one satellite to another. The last term in
Eq. (52) should not be confused with the correction of Eq. (40).
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9 Frequency Shifts Induced by Orbit Changes

Improvements in GPS motivate attention to other small relativistic effects that have previously
been too small to be explicitly considered. For SV clocks, these include frequency changes due
to orbit adjustments, and effects due to earth’s oblateness. For example, between July 25 and
October 10, 2000, SV43 occupied a transfer orbit while it was moved from slot 5 to slot 3 in orbit
plane F. I will show here that the fractional frequency change associated with a change 𝑑𝑎 in the
semi-major axis 𝑎 (in meters) can be estimated as 9.429×10−18𝑑𝑎. In the case of SV43, this yields
a prediction of −1.77×10−13 for the fractional frequency change of the SV43 clock which occurred
July 25, 2000. This relativistic effect was measured very carefully [12]. Another orbit adjustment
on October 10, 2000 should have resulted in another fractional frequency change of +1.75× 10−13,
which was not measured carefully. Also, earth’s oblateness causes a periodic fractional frequency
shift with period of almost 6 hours and amplitude 0.695 × 10−14. This means that quadrupole
effects on SV clock frequencies are of the same general order of magnitude as the frequency breaks
induced by orbit changes. Thus, some approximate expressions for the frequency effects on SV
clock frequencies due to earth’s oblateness are needed. These effects will be discussed with the
help of Lagrange’s planetary perturbation equations.

Five distinct relativistic effects, discussed in Section 5, are incorporated into the System Spec-
ification Document, ICD-GPS-200 [2]. These are:

∙ the effect of earth’s mass on gravitational frequency shifts of atomic reference clocks fixed on
the earth’s surface relative to clocks at infinity;

∙ the effect of earth’s oblate mass distribution on gravitational frequency shifts of atomic clocks
fixed on earth’s surface;

∙ second-order Doppler shifts of clocks fixed on earth’s surface due to earth rotation;

∙ gravitational frequency shifts of clocks in GPS satellites due to earth’s mass;

∙ and second-order Doppler shifts of clocks in GPS satellites due to their motion through an
Earth-Centered Inertial (ECI) Frame.

The combination of second-order Doppler and gravitational frequency shifts given in Eq. (27)
for a clock in a GPS satellite leads directly to the following expression for the fractional frequency
shift of a satellite clock relative to a reference clock fixed on earth’s geoid:

Δ𝑓

𝑓
= −1

2
𝑣2

𝑐2
− 𝐺𝑀E

𝑟𝑐2
− Φ0

𝑐2
, (53)

where 𝑣 is the satellite speed in a local ECI reference frame, 𝐺𝑀E is the product of the Newtonian
gravitational constant 𝐺 and earth’s mass 𝑀 , 𝑐 is the defined speed of light, and Φ0 is the effective
gravitational potential on the earth’s rotating geoid. The term Φ0 includes contributions from
both monopole and quadrupole moments of earth’s mass distribution, and the effective centripetal
potential in an earth-fixed reference frame such as the WGS-84 (873) frame, due to earth’s rota-
tion. The value for Φ0 is given in Eq. (18), and depends on earth’s equatorial radius 𝑎1, earth’s
quadrupole moment coefficient 𝐽2, and earth’s angular rotational speed 𝜔E.

If the GPS satellite orbit can be approximated by a Keplerian orbit of semi-major axis 𝑎, then
at an instant when the distance of the clock from earth’s center of mass is 𝑟, this leads to the
following expression for the fraction frequency shift of Eq. (53):

Δ𝑓

𝑓
= −3𝐺𝑀E

2𝑎𝑐2
− Φ0

𝑐2
+

2𝐺𝑀E

𝑐2

[︂
1
𝑟
− 1

𝑎

]︂
. (54)
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Eq. (54) is derived by making use of the conservation of total energy (per unit mass) of the
satellite, Eq. (33), which leads to an expression for 𝑣2 in terms of 𝐺𝑀E/𝑟 and 𝐺𝑀E/𝑎 that can
be substituted into Eq. (53). The first two terms in Eq. (54) give rise to the “factory frequency
offset”, which is applied to GPS clocks before launch in order to make them beat at a rate equal to
that of reference clocks on earth’s surface. The last term in Eq. (54) is very small when the orbit
eccentricity 𝑒 is small; when integrated over time these terms give rise to the so-called “𝑒 sin 𝐸”
effect or “eccentricity effect”. In most of the following discussion we shall assume that eccentricity
is very small.

Clearly, from Eq. (54), if the semi-major axis should change by an amount 𝛿𝑎 due to an orbit
adjustment, the satellite clock will experience a fractional frequency change

𝛿𝑓

𝑓
= +

3𝐺𝑀E𝛿𝑎

2𝑐2𝑎2
. (55)

The factor 3/2 in this expression arises from the combined effect of second-order Doppler and
gravitational frequency shifts. If the semi-major axis increases, the satellite will be higher in
earth’s gravitational potential and will be gravitationally blue-shifted more, while at the same
time the satellite velocity will be reduced, reducing the size of the second-order Doppler shift
(which is generally a red shift). The net effect would make a positive contribution to the fractional
frequency shift.

Although it has long been known that orbit adjustments are associated with satellite clock
frequency shifts, nothing has been documented and up until 2000 no reliable measurements of
such shifts had been made. On July 25, 2000, a trajectory change was applied to SV43 to shift
the satellite from slot F5 to slot F3. A drift orbit extending from July 25, 2000 to October 10,
2000 was used to accomplish this move. A “frequency break” was observed but the cause of this
frequency jump was not initially understood. Marvin Epstein, Joseph Fine, and Eric Stoll [12] of
ITT evaluated the frequency shift of SV43 arising from this trajectory change. They reported that
associated with the thruster firings on July 25, 2000 there was a frequency shift of the Rubidium
clock on board SV43 of amount

𝛿𝑓

𝑓
= −1.85× 10−13 (measured). (56)

Epstein et al. [12] suggested that the above frequency shift was relativistic in origin, and used
precise ephemerides obtained from the National Imagery and Mapping Agency to estimate the
frequency shift arising from second-order Doppler and gravitational potential differences. They
calculated separately the second-order Doppler and gravitational frequency shifts due to the orbit
change. The NIMA precise ephemerides are expressed in the WGS-84 coordinate frame, which
is earth-fixed. If used without removing the underlying earth rotation, the velocity would be
erroneous. They therefore transformed the NIMA precise ephemerides to an earth-centered inertial
frame by accounting for a (uniform) earth rotation rate.

The semi-major axes before and after the orbit change were calculated by taking the average
of the maximum and minimum radial distances. Speeds were calculated using a Keplerian orbit
model. They arrived at the following numerical values for semi-major axis and velocity:

07/22/00 : 𝑎 = 2.656139556× 107 m; 𝑣 = 3.873947951× 103 m s−1,

07/30/00 : 𝑎 = 2.654267359× 107 m; 𝑣 = 3.875239113× 103 m s−1.

Since the semi-major axis decreased, the frequency shift should be negative. The prediction they
made for the frequency shift, which was based on Eq. (53), was then

𝛿𝑓

𝑓
= −1.734× 10−13, (57)
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which is to be compared with the measured value, Eq. (56). This is fairly compelling evidence that
the observed frequency shift is indeed a relativistic effect.

Lagrange perturbation theory. Perturbations of GPS orbits due to earth’s quadrupole
mass distribution are a significant fraction of the change in semi-major axis associated with the
orbit change discussed above. This raises the question whether it is sufficiently accurate to use a
Keplerian orbit to describe GPS satellite orbits, and estimate the semi-major axis change as though
the orbit were Keplerian. In this section, we estimate the effect of earth’s quadrupole moment on
the orbital elements of a nominally circular orbit and thence on the change in frequency induced
by an orbit change. Previously, such an effect on the SV clocks has been neglected, and indeed it
does turn out to be small. However, the effect may be worth considering as GPS clock performance
continues to improve.

To see how large such quadrupole effects may be, we use exact calculations for the perturbations
of the Keplerian orbital elements available in the literature [13]. For the semi-major axis, if the
eccentricity is very small, the dominant contribution has a period twice the orbital period and
has amplitude 3𝐽2𝑎

2
1 sin2 𝑖0/(2𝑎0) ≈ 1658 m. WGS-84 (837) values for the following additional

constants are used in this section: 𝑎1 = 6.3781370 × 106 m; 𝜔E = 7.291151467 × 10−5 s−1; 𝑎0 =
2.656175×107 m, where 𝑎1 and 𝑎0 are earth’s equatorial radius and SV orbit semi-major axis, and
𝜔E is earth’s rotational angular velocity.

The oscillation in the semi-major axis would significantly affect calculations of the semi-major
axis at any particular time. This suggests that Eq. (33) needs to be reexamined in light of the
periodic perturbations on the semi-major axis. Therefore, in this section we develop an approximate
description of a satellite orbit of small eccentricity, taking into account earth’s quadrupole moment
to first order. Terms of order 𝐽2 × 𝑒 will be neglected. This problem is non-trivial because
the perturbations themselves (see, for example, the equations for mean anomaly and altitude of
perigee) have factors 1/𝑒 which blow up as the eccentricity approaches zero. This problem is a
mathematical one, not a physical one. It simply means that the observable quantities – such as
coordinates and velocities – need to be calculated in such a way that finite values are obtained.
Orbital elements that blow up are unobservable.

Conservation of energy. The gravitational potential of a satellite at position (𝑥, 𝑦, 𝑧) in
equatorial ECI coordinates in the model under consideration here is

𝑉 (𝑥, 𝑦, 𝑧) = −𝐺𝑀E

𝑟

(︂
1− 𝐽2𝑎

2
1

𝑟2

[︂
3𝑧2

2𝑟2
− 1

2

]︂)︂
. (58)

Since the force is conservative in this model (solar radiation pressure, thrust, etc. are not con-
sidered), the kinetic plus potential energy is conserved. Let 𝜖 be the energy per unit mass of an
orbiting mass point. Then

𝜖 = constant =
𝑣2

2
+ 𝑉 (𝑥, 𝑦, 𝑧) =

𝑣2

2
− 𝐺𝑀E

𝑟
+ 𝑉 ′(𝑥, 𝑦, 𝑧), (59)

where 𝑉 ′(𝑥, 𝑦, 𝑧) is the perturbing potential due to the earth’s quadrupole potential. It is shown
in textbooks [13] that, with the help of Lagrange’s planetary perturbation theory, the conservation
of energy condition can be put in the form

𝜖 = −𝐺𝑀E

2𝑎
+ 𝑉 ′(𝑥, 𝑦, 𝑧), (60)

where 𝑎 is the perturbed (osculating) semi-major axis. In other words, for the perturbed orbit,

𝑣2

2
− 𝐺𝑀E

𝑟
= −𝐺𝑀E

2𝑎
. (61)
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On the other hand, the net fractional frequency shift relative to a clock at rest at infinity is
determined by the second-order Doppler shift (a red shift) and a gravitational redshift. The total
relativistic fractional frequency shift is

Δ𝑓

𝑓
= −𝑣2

2
− 𝐺𝑀E

𝑟
+ 𝑉 ′(𝑥, 𝑦, 𝑧). (62)

The conservation of energy condition can be used to express the second-order Doppler shift in
terms of the potential. Since in this paper we are interested in fractional frequency changes caused
by changing the orbit, it will make no difference if the calculations use a clock at rest at infinity
as a reference rather than a clock at rest on earth’s surface. The reference potential cancels out to
the required order of accuracy. Therefore, from perturbation theory we need expressions for the
square of the velocity, for the radius 𝑟, and for the perturbing potential. We now proceed to derive
these expressions. We refer to the literature [13] for the perturbed osculating elements. These are
exactly known, to all orders in the eccentricity, and to first order in 𝐽2. We shall need only the
leading terms in eccentricity 𝑒 for each element.

Perturbation equations. First we recall some facts about an unperturbed Keplerian orbit,
which have already been introduced (see Section 5). The eccentric anomaly 𝐸 is to be calculated
by solving the equation

𝐸 − 𝑒 sin 𝐸 = 𝑀 = 𝑛0(𝑡− 𝑡0), (63)

where 𝑀 is the “mean anomaly” and 𝑡0 is the time of passage past perigee, and

𝑛0 =
√︀

𝐺𝑀E/𝑎3. (64)

Then, the perturbed radial distance 𝑟 and true anomaly 𝑓 of the satellite are obtained from

𝑟 = 𝑎(1− 𝑒 cos 𝐸), (65)

cos 𝑓 =
cos 𝐸 − 𝑒

1− 𝑒 cos 𝐸
, sin 𝑓 =

√︀
1− 𝑒2

sin 𝐸

1− 𝑒 cos 𝐸
. (66)

The observable 𝑥, 𝑦, 𝑧-coordinates of the satellite are then calculated from the following equations:

𝑥 = 𝑟(cos Ω cos(𝑓 + 𝜔)− cos 𝑖 sin Ω sin(𝑓 + 𝜔)), (67)
𝑦 = 𝑟(sin Ω cos(𝑓 + 𝜔) + cos 𝑖 cos Ω sin(𝑓 + 𝜔)), (68)
𝑧 = 𝑟(sin 𝑖 sin(𝑓 + 𝜔)), (69)

where Ω is the angle of the ascending line of nodes, 𝑖 is the inclination, and 𝜔 is the altitude of
perigee. By differentiation with respect to time, or by using the conservation of energy equation,
one obtains the following expression for the square of the velocity:

𝑣2 =
𝐺𝑀E

𝑎

1 + 𝑒 cos 𝐸

1− 𝑒 cos 𝐸
. (70)

In these expressions 𝑣2 and 𝑟−1 are observable quantities. The combination 𝑒 cos 𝐸, where E is
the eccentric anomaly, occurs in both of these expressions. To derive expressions for 𝑣2 and 𝑟−1 in
the perturbed orbits, expressions for the perturbed elements 𝑎, 𝑒, 𝐸 are to be substituted into the
right-hand sides of the Keplerian equations for 𝐸, 𝑟, and 𝑣2. Therefore, we need the combination
𝑒 cos 𝐸 in the limit of small eccentricity.
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Perturbed eccentricity. To leading order, from the literature [13] we have for the perturbed
eccentricity the following expression:

𝑒 = 𝑒0 +
3𝐽2𝑎

2
1

2𝑎2
0

[︂(︂
1− 3

2
sin2 𝑖0

)︂
cos 𝑓 +

1
4

sin2 𝑖0 cos(2𝜔0 + 𝑓)

+
7
12

sin2 𝑖0 cos(2𝜔0 + 3𝑓)
]︂
, (71)

where 𝑒0 is a constant of integration.

Perturbed eccentric anomaly. The eccentric anomaly is calculated from the equation

𝐸 = 𝑀 + 𝑒 sin 𝐸, (72)

with perturbed values for 𝑀 and 𝑒. Expanding to first order in 𝑒 gives the following expression
for cos 𝐸:

cos 𝐸 = cos𝑀 − 𝑒 sin 𝑀 sin 𝐸, (73)

and multiplying by 𝑒 yields

𝑒 cos 𝐸 = 𝑒 cos 𝑀 − 𝑒2 sin 𝑀 sin 𝐸 ≈ 𝑒 cos 𝑀. (74)

We shall neglect higher order terms in 𝑒. The perturbed expression for mean anomaly 𝑀 can be
written as

𝑀 = 𝑀0 + Δ𝑀/𝑒0, (75)

where we indicate explicitly the terms in 𝑒−1
0 ; that is, the quantity 𝑀0 contains all terms which

do not blow up as 𝑒 → 0, and Δ𝑀/𝑒0 contains all the other terms. The perturbations of 𝑀 are
known exactly but we shall only need the leading order terms, which are

Δ𝑀/𝑒0 = −3𝐽2𝑎
2
1

2𝑒0𝑎2
0

[︂(︂
1− 3

2
sin2 𝑖0

)︂
sin 𝑓 − 1

4
sin2 𝑖0 sin(2𝜔0 + 𝑓)

+
7
12

sin2 𝑖0 sin(2𝜔0 + 3𝑓)
]︂
, (76)

and so for very small eccentricity,

𝑒 cos 𝐸 = 𝑒 cos 𝑀0 −Δ𝑀 sin 𝑀0. (77)

Then after accounting for contributions from the perturbed eccentricity and the perturbed mean
anomaly, after a few lines of algebra we obtain the following for 𝑒 cos 𝐸:

𝑒 cos 𝐸 = 𝑒0 cos 𝐸0 +
3𝐽2𝑎

2
1

2𝑎2
0

(︂
1− 3

2
sin2 𝑖0

)︂
+

5𝐽2𝑎
2
1

4𝑎2
0

sin2 𝑖0 cos 2(𝜔0 + 𝑓), (78)

where the first term is the unperturbed part. The perturbation is a constant, plus a term with
twice the orbital period.

Perturbation in semi-major axis. From the literature, the leading terms in the perturbation
of the semi-major axis are

𝑎 = 𝑎0 +
3𝐽2𝑎

2
1

2𝑎0
sin2 𝑖0 cos 2(𝜔0 + 𝑓), (79)

where 𝑎0 is a constant of integration. The amplitude of the periodic term is about 1658 meters.
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Perturbation in radius. We are now in position to compute the perturbation in the radius.
From the expression for 𝑟, after combining terms we have

𝑟 = 𝑎0(1− 𝑒0 cos 𝐸0) + Δ𝑎−Δ(𝑒 cos 𝐸)

= 𝑎0(1− 𝑒0 cos 𝐸0)−
3𝐽2𝑎

2
1

2𝑎0

(︂
1− 3

2
sin2 𝑖0

)︂
+

𝐽2𝑎
2
1

4𝑎0
sin2 𝑖0 cos 2(𝜔0 + 𝑓). (80)

The amplitude of the periodic part of the perturbation in the observable radial distance is only
276 meters.

Perturbation in the velocity squared. The above results, after substituting into Eq. (70),
yield the expression

𝑣2

2
=

𝐺𝑀E

2𝑎0
(1 + 2𝑒0 cos 𝐸0) +

3𝐺𝑀E𝐽2𝑎
2
1

𝑎3
0

(︂
1− 3

2
sin2 𝑖0

)︂
+

𝐺𝑀E𝐽2𝑎
2
1

2𝑎3
0

sin2 𝑖0 cos 2(𝜔0 + 𝑓). (81)

Perturbation in 𝐺𝑀E/𝑟. The above expression for the perturbed 𝑟 yields the following for
the monopole contribution to the gravitational potential:

− 𝐺𝑀E

𝑟
= −𝐺𝑀E

𝑎0
(1 + 𝑒0 cos 𝐸0)−

3𝐺𝑀E𝐽2𝑎
2
1

2𝑎3
0

(︂
1− 3

2
sin2 𝑖0

)︂
+

𝐺𝑀E𝐽2𝑎
2
1 sin2 𝑖0

4𝑎3
0

cos 2(𝜔0 + 𝑓). (82)

Evaluation of the perturbing potential. Since the perturbing potential contains the small
factor 𝐽2, to leading order we may substitute unperturbed values for 𝑟 and 𝑧 into 𝑉 ′(𝑥, 𝑦, 𝑧), which
yields the expression

𝑉 ′(𝑥, 𝑦, 𝑧) = −𝐺𝑀E𝐽2𝑎
2
1

2𝑎3
0

(︂
1− 3

2
sin2 𝑖0

)︂
− 3𝐺𝑀E𝐽2𝑎

2
1 sin2 𝑖0

4𝑎3
0

cos 2(𝜔0 + 𝑓). (83)

Conservation of energy. It is now very easy to check conservation of energy. Adding kinetic
energy per unit mass to two contributions to the potential energy gives

𝜖 =
𝑣2

2
− 𝐺𝑀E

𝑟
+ 𝑉 ′ = −𝐺𝑀E

2𝑎0
− 𝐺𝑀E𝐽2𝑎

2
1

2𝑎3
0

(︂
1− 3

2
sin2 𝑖0

)︂
. (84)

This verifies that the perturbation theory gives a constant energy. The extra term in the above
equation, with 𝐽2 in it, can be neglected. This is because the nominal inclination of GPS orbits
is such that the factor (1 − 3 sin2 𝑖0/2) is essentially zero. The near vanishing of this factor is
pure coincidence in the GPS. There was no intent, in the original GPS design, that quadrupole
effects would be simpler if the orbital inclination were close to 55∘. However, because this term is
negligible, numerical calculations of the total energy per unit mass provide a means of evaluating
the quantity 𝑎0.
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Calculation of fractional frequency shift. The fractional frequency shift calculation is very
similar to the calculation of the energy, except that the second-order Doppler term contributes with
a negative sign. The result is

Δ𝑓

𝑓
= − 𝑣2

2𝑐2
− 𝐺𝑀E

𝑐2𝑟
+

𝑉 ′

𝑐2

= −3𝐺𝑀E

2𝑎0𝑐2
− 2𝐺𝑀E

𝑐2𝑎0
𝑒0 cos 𝐸0 −

7𝐺𝑀E𝐽2𝑎
2
1

2𝑎3
0𝑐

2

(︂
1− 3

2
sin2 𝑖0

)︂
−𝐺𝑀E𝐽2𝑎

2
1 sin2 𝑖0

𝑎3
0𝑐

2
cos 2(𝜔0 + 𝑓). (85)

The first term, when combined with the reference potential at earth’s geoid, gives rise to the
“factory frequency offset”. The seond term gives rise to the eccentricity effect. The third term can
be neglected, as pointed out above. The last term has an amplitude

𝐺𝑀E𝐽2𝑎
2
1 sin2 𝑖0

𝑎3
0𝑐

2
= 6.95× 10−15, (86)

which may be large enough to consider when calculating frequency shifts produced by orbit changes.
Therefore, this contribution may have to be considered in the future in the determination of the
semi-major axis, but for now we neglect it.

The result suggests the following method of computing the fractional frequency shift: Averaging
the shift over one orbit, the periodic term will average down to a negligible value. The third term
is negligible. So if one has a good estimate for the nominal semi-major axis parameter, the term
−3𝐺𝑀E/2𝑎0𝑐

2 gives the average fractional frequency shift. On the other hand, the average energy
per unit mass is given by 𝜖 = −𝐺𝑀E/2𝑎0. Therefore, the precise ephemerides, specified in an ECI
frame, can be used to compute the average value for 𝜖; then the average fractional frequency shift
will be

Δ𝑓

𝑓
= 3𝜖/𝑐2. (87)

The last periodic term in Eq. (85) is of a form similar to that which gives rise to the eccentric-
ity correction, which is applied by GPS receivers. Considering only the last periodic term, the
additional time elapsed on the orbiting clock will be given by

𝛿𝑡𝐽2 =
∫︁

path

𝑑𝑡

[︂
−𝐺𝑀E𝐽2𝑎

2
1 sin2 𝑖0

𝑎3
0𝑐

2
cos(2𝜔0 + 2𝑛𝑡)

]︂
, (88)

where to a sufficient approximation we have replaced the quantity 𝑓 in the integrand by 𝑛 =√︀
𝐺𝑀E/𝑎3

0; 𝑛 is the approximate mean motion of GPS satellites. Integrating and dropping the
constant of integration (assuming as usual that such constant time offsets are lumped with other
contributions) gives the periodic relativistic effect on the elapsed time of the SV clock due to earth’s
quadrupole moment:

𝛿𝑡𝐽2 = −

√︃
𝐺𝑀E

𝑎3
0

𝐽2𝑎
2
1 sin2 𝑖0
2𝑐2

sin(2𝜔0 + 2𝑛𝑡). (89)

The correction that should be applied by the receiver is the negative of this expression,

𝛿𝑡𝐽2(correction) =

√︃
𝐺𝑀E

𝑎3
0

𝐽2𝑎
2
1 sin2 𝑖0
2𝑐2

sin(2𝜔0 + 2𝑛𝑡). (90)
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The phase of this correction is zero when the satellite passes through earth’s equatorial plane going
northwards. If not accounted for, this effect on the SV clock time would give rise to a peak-to-peak
periodic navigational error in position of approximately 2𝑐× 𝛿𝑡𝐽2 = 1.43 cm.

These effects were considered by Ashby and Spilker [9], pp. 685–686, but in that work the effect
of earth’s quadrupole moment on the term 𝐺𝑀E/𝑟 was not considered; the present calculations
supercede that work.

Numerical calculations. Precise ephemerides were obtained for SV43 from the web site
ftp://sideshow.jpl.nasa.gov/pub/gipsy_products/2000/orbits at the Jet Propulsion Lab-
oratory. These are expressed in the J2000 ECI frame. Computer code was written to compute the
average value of 𝜖 for one day and thence the fractional frequency shift relative to infinity before
and after each orbit change. The following results were obtained:

07/22/00 : 𝑎 = (2.65611575× 107 ± 69) m,

07/30/00 : 𝑎 = (2.65423597× 103 ± 188) m,

10/07/00 : 𝑎 = (2.65418742× 107 ± 95) m,

10/12/00 : 𝑎 = (2.65606323× 107 ± 58) m.

Therefore, the fractional frequency change produced by the orbit change of July 25 is calculated
to be

Δ𝑓

𝑓
= −1.77× 10−13, (91)

which agrees with the measured value to within about 3.3%. The agreement is slightly better than
that obtained in [12], perhaps because they did not consider contributions to the energy from the
quadrupole moment term.

A similar calculation shows that the fractional frequency shift of SV43 on October 10, 2001
should have been

Δ𝑓

𝑓
= +1.75× 10−13. (92)

No measurement of this shift is available.
On March 9, 2001, SV54’s orbit was changed by firing the thruster rockets. Using the above

procedures, I can calculate the fractional frequency change produced in the onboard clocks. The
result is

03/07/01 : 𝑎 = (2.65597188× 107 ± 140) m,

03/11/01 : 𝑎 = (2.65359261× 107 ± 108) m.

Using Eq. (55) yields the following prediction for the fractional frequency change of SV54 on
March 9, 2001:

Δ𝑓

𝑓
= −2.24× 10−13 ± 0.02× 10−13. (93)

The quoted uncertainty is due to the combined uncertainties from the determination of the energy
per unit mass before and after the orbit change. These uncertainties are due to neglecting tidal
forces of the sun and moon, radiation pressure, and other non-gravitational forces.

Summary. We note that the values of semi-major axis reported by Epstein et al. [12] differ
from the values obtained by averaging as outlined above, by 200–300 m. This difference arises
because of the different methods of calculation. In the present calculation, an attempt was made
to account for the effect of earth’s quadrupole moment on the Keplerian orbit. It was not necessary
to compute the orbit eccentricity. Agreement with measurement of the fractional frequency shift
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was only a few percent better than that obtained by differencing the maximum and minimum
radii. This approximate treatment of the orbit makes no attempt to consider perturbations that
are non-gravitational in nature, e.g., solar radiation pressure. The work was an investigation of
the approximate effect of earth’s quadrupole moment on the GPS satellite orbits, for the purpose
of (possibly) accurate calculations of the fractional frequency shifts that result from orbit changes.

As a general conclusion, the fractional frequency shift can be estimated to very good accuracy
from the expression for the “factory frequency offset”.

𝛿𝑓

𝑓
= +

3𝐺𝑀E𝛿𝑎

2𝑐2𝑎2
. (94)
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10 Secondary Relativistic Effects

There are several additional significant relativistic effects that must be considered at the level of
accuracy of a few cm (which corresponds to 100 picoseconds of delay). Many investigators are
modelling systematic effects down to the millimeter level, so these effects, which currently are not
sufficiently large to affect navigation, may have to be considered in the future.

Signal propagation delay. The Shapiro signal propagation delay may be easily derived in
the standard way from the metric, Eq. (23), which incorporates the choice of coordinate time rate
expressed by the presence of the term in Φ0/𝑐2. Setting 𝑑𝑠2 = 0 and solving for the increment of
coordinate time along the path increment 𝑑𝜎 =

√︀
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2 gives

𝑑𝑡 =
1
𝑐

[︂
1− 2𝑉

𝑐2
+

Φ0

𝑐2

]︂
𝑑𝜎. (95)

The time delay is sufficiently small that quadrupole contributions to the potential (and to Φ0) can
be neglected. Integrating along the straight line path a distance 𝑙 between the transmitter and
receiver gives for the time delay

Δ𝑡delay =
Φ0

𝑐2

𝑙

𝑐
+

2𝐺𝑀E

𝑐3
ln

[︂
𝑟1 + 𝑟2 + 𝑙

𝑟1 + 𝑟2 − 𝑙

]︂
, (96)

where 𝑟1 and 𝑟2 are the distances of transmitter and receiver from earth’s center. The second term
is the usual expression for the Shapiro time delay. It is modified for GPS by a term of opposite sign
(Φ0 is negative), due to the choice of coordinate time rate, which tends to cancel the logarithm
term. The net effect for a satellite to earth link is less than 2 cm and for most purposes can be
neglected. One must keep in mind, however, that in the main term 𝑙/𝑐, 𝑙 is a coordinate distance
and further small relativistic corrections are required to convert it to a proper distance.

Effect on geodetic distance. At the level of a few millimeters, spatial curvature effects
should be considered. For example, using Eq. (23), the proper distance between a point at radius
𝑟1 and another point at radius 𝑟2 directly above the first is approximately∫︁ 𝑟2

𝑟1

𝑑𝑟

[︂
1 +

𝐺𝑀E

𝑐2𝑟

]︂
= 𝑟2 − 𝑟1 +

𝐺𝑀E

𝑐2
ln

(︂
𝑟2

𝑟1

)︂
. (97)

The difference between proper distance and coordinate distance, and between the earth’s surface
and the radius of GPS satellites, is approximately 4.43 ln(4.2) mm ≈ 6.3 mm. Effects of this order
of magnitude would enter, for example, in the comparison of laser ranging to GPS satellites, with
numerical calculations of satellite orbits based on relativistic equations of motion using coordinate
times and coordinate distances.

Phase wrap-up. Transmitted signals from GPS satellites are right circularly polarized and
thus have negative helicity. For a receiver at a fixed location, the electric field vector rotates
counterclockwise, when observed facing into the arriving signal. Let the angular frequency of the
signal be 𝜔 in an inertial frame, and suppose the receiver spins rapidly with angular frequency
Ω which is parallel to the propagation direction of the signal. The antenna and signal electric
field vector rotate in opposite directions and thus the received frequency will be 𝜔 + Ω. In GPS
literature this is described in terms of an accumulation of phase called “phase wrap-up”. This
effect has been known for a long time [17, 20, 21, 24], and has been experimentally measured with
GPS receivers spinning at rotational rates as low as 8 cps. It is similar to an additional Doppler
effect; it does not affect navigation if four signals are received simultaneously by the receiver as in

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-1

http://www.livingreviews.org/lrr-2003-1


36 Neil Ashby

Eqs. (1). This observed effect raises some interesting questions about transformations to rotating,
spinning coordinate systems.

Effect of other solar system bodies. One set of effects that has been “rediscovered” many
times are the redshifts due to other solar system bodies. The Principle of Equivalence implies that
sufficiently near the earth, there can be no linear terms in the effective gravitational potential due
to other solar system bodies, because the earth and its satellites are in free fall in the fields of
all these other bodies. The net effect locally can only come from tidal potentials, the third terms
in the Taylor expansions of such potentials about the origin of the local freely falling frame of
reference. Such tidal potentials from the sun, at a distance 𝑟 from earth, are of order 𝐺𝑀⊙𝑟2/𝑅3

where 𝑅 is the earth-sun distance [8]. The gravitational frequency shift of GPS satellite clocks
from such potentials is a few parts in 1016 and is currently neglected in the GPS.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-1

http://www.livingreviews.org/lrr-2003-1


Relativity in the Global Positioning System 37

11 Augmentation Systems

Navigation based on GPS can fail in many different ways. Transmitted power is low, leading
to ease of jamming and loss of signal under forest canopies or in urban canyons. Clock failures
in satellites can go undetected for hours if a monitor station is not in view, leading to unreliable
signal transmissions. Among nations other than the United States, there is an element of distrust of
military control of the GPS. Such disadvantages have led to a number of so-called “augmentations”
of GPS designed to provide users with additional GPS-like signals, or correction signals, that
increase the reliability of GPS navigation. In addition, there are several new independent Global
Satellite Navigation Systems being developed and deployed. We shall describe these developments
since the implementation of relativistic effects differs from one system to the next.

WAAS (Wide-Area Augmentation System) provides improved reliability and accuracy over
the continential U.S.A. system of 24 receivers at precisely known locations continually monitors
signals from GPS satellites and computes corrections that are uploaded to leased geosynchronous
satellites for retransmission to users who have WAAS-enabled receivers. No new relativity effects
are involved; the corrections account primarily for clock drifts and ionospheric and tropospheric
delays. EGNOS (European Geostationary Navigation Overlay System) is a similar system for
improving navigation over Europe. MTSAT is a Japanese augmentation system.

The Japanese QZSS (Quasi-Zenith Satellite System) is a satellite-based augmentation system
consisting of three satellites in geosynchronous orbits (𝑎 = 42, 164 km, but with large eccentricity,
𝑒 ≈ 0.1). The ground tracks of the satellites describe a figure 8 on earth’s surface. At apogee,
where the satellites are moving most slowly, the satellites spend more time above Japan. For
atomic clocks in such satellites, relativistic effects would cause a fractional frequency shift of about
−5.39 × 10−10 (see Figure 2). Also, the eccentricity effect is much larger than in GPS for two
reasons: both the semimajor axis 𝑎 and the eccentricity are larger than in GPS. The eccentricity
effect, given by Eq. (38), has an amplitude of about 290 ns. Although the satellites carry atomic
clocks the system is termed an augmentation system since it is not globally available.
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12 Global Navigation Systems

From a practical point of view, data from additional satellites can provide improved navigation
performance. Also, political considerations have led to development and deployment of satellite
navigation systems that are alternatives to GPS. When such systems are made interoperable with
GPS, “GNSS” results (the Global Navigational Satellite System). Here we discuss briefly how
relativistic effects are incorporated into these new systems.

GLONASS is a Russian system that is very similar to GPS. The satellites are at slightly lower
altitudes, and orbit the earth 17 times while the GPS satellites orbit 16 times. Figure 2 shows that
the factory frequency clock offset is slightly less than that for GPS. Although a full constellation of
24 satellites was originally envisioned, for many years no more than a dozen or so healthy satellites
have been available.

GALILEO is a project of the European Space Agency, intended to put about 30 satellites
carrying atomic clocks in orbit. In contrast to GPS which is free to users, the GALILEO system
ultimately will be funded by user fees. Information released in 2006 by the GALILEO project [25]
states that relativistic corrections will be the responsibility of the users (that is, the receivers).
This means that GNSS devices capable of receiving both GPS and GALILEO signals will have to
contain additional relativity software to process GALILEO signals. Since no “factory frequency
offset” is applied to atomic clocks in the GALILEO satellites, relativity effects will cause satellite
clock time to ramp away from TAI and will require large correction terms to be transmitted to
users.

BEIDOU is a satellite navigation system being developed and deployed by the People’s Republic
of China. In its early stages, there were three satellites capable of transponding timing signals
between a master control station and receivers on the ground. Timed pulses are sent from the
control station, to the satellites, and then to ground-based receivers, which sends them back through
the satellites to the control station. With the timing information, and topographic information
(the receivers have to be on earth’s surface), the receiver position can be computed and relayed
back to the receiver. Since receivers must also transmit, they are bulky. The principal relativistic
correction involved here is the Sagnac effect, which can amount to several hundred nanoseconds.

BEIDOU is intended to develop into a global satellite navigation system that is independent,
yet interoperable with GALILEO. Very little information is currently available about the structure
of this system.
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13 Applications

The number of applications of GPS have been astonishing. It would take several paragraphs
just to list them. Accurate positioning and timing, other than for military navigation, include
synchronization of power line nodes for fault detection, communications, VLBI, navigation in deep
space, tests of fundamental physics, measurements on pulsars, tests of gravity theories, vehicle
tracking, search and rescue, surveying, mapping, and navigation of commercial aircraft, to name
a few. These are too numerous to go into in much detail here, but some applications are worth
mentioning. Civilian applications have overtaken military applications to the extent that SA was
turned off in May of 2000.

The Nobel-prizewinning work of Joseph Taylor and his collaborators [16, 23] on the measure-
ment of the rate of increase of the binary pulsar period depended on GPS receivers at the Arecibo
observatory, for transferring UTC from the U.S. Naval Observatory and NIST to the local clock.
Time standards around the world are compared using GPS in common-view; with this technique
SA would cancel out, as well as do many sources of systematic errors such as ionospheric and tro-
pospheric delays. Precise position information can assist in careful husbandry of natural resources,
and animal and vehicle fleet tracking can result in improved efficiency. Precision agriculture makes
use of GPS receivers in real-time application of pesticides or fertilizers, minimizing waste. Sunken
vessels or underwater ruins with historically significant artifacts can be located using the GPS
and archeologists can return again and again with precision to the same location. Monster ore
trucks or earth-moving machines can be fitted with receivers and controlled remotely with minimal
risk of collision or interference with other equipment. Disposable GPS receivers dropped through
tropical storms transmit higher resolution measurements of temperature, humidity, pressure, and
wind speed than can be obtained by any other method; these have led to improved understanding
of how tropical storms intensify. Slight movements of bridges or buildings, in response to various
loads, can be monitored in real time. Relative movements of remote parts of earth’s crust can be
accurately measured in a short time, contributing to better understanding of tectonic processes
within the earth and, possibly, to future predictions of earthquakes. With the press of a button, a
lost hiker can send a distress signal that includes the hikers’ location.

These and many other creative applications of precise positioning and timing are leading to
a rapid economic expansion of GPS products and services. Manufacturers produce hundreds of
different GPS products for commercial, private, and military use and the number and variety of
products is increasing. The number of receivers manufactured each year is in excess of two million,
and different applications are continually being invented. Marketing studies predict sales of GPS
equipment and services exceeding $30 billion per year; revenue for the European Galileo system is
projected to be 10 billion Euros per year.
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14 Conclusions

The GPS is a remarkable laboratory for applications of the concepts of special and general relativity.
GPS is also valuable as an outstanding source of pedagogical examples. It is deserving of more
scrutiny from relativity experts.

Alternative global navigation systems such as GLONASS, GALILEO, and BEIDOU are all
based on concepts of clock synchronization based on a locally inertial reference system freely
falling along with the earth. This concept, fundamentally dependent on a relativistic view of space
and time, appears to have been amply confirmed by the success of GPS.

Plans are being made to put laser-cooled clock(s) having stabilities of 5× 10−14/
√

𝜏 and accu-
racies of 1× 1016, on the International Space Station. This will open up additional possibilities for
testing relativity as well as for making improvements in GPS and in other potential navigational
satellite systems.
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