Scuola di Storia della Fisica

"Sulla Storia dell'Astronomia: il Novecento. Gli strumenti, le scoperte, le teorie."

Asiago 22-26 Febbraio 2016

GLOSSARIO: Magnitudini

A Bruno CACCIN (1944 – 2004)

Professore di Astronomia

MAGNITUDINI

Nell'osservazione (<u>ideale</u>) astronomica di una stella, di una galassia ,ecc. sia:

 $\Delta E_{v} \equiv$ l'energia raccolta nel <u>tempo</u> Δt , con un telescopio di <u>area</u> ΔA nell'intervallo di di frequenze v, $v+\Delta v$.

Si definisce:

 $F_v \equiv$ Flusso della radiazione al telescopio

La quantità:

$$F_{\nu} = \frac{\Delta E_{\nu}}{\Delta t \Delta A \Delta \nu}$$

Nell'ipotesi di emissione isotropa e assenza di assorbimento o di emissione, nota la distanza r della sorgente, la quantità L_v pari a :

$$L_{v} = 4\pi r^{2} F_{v}$$

è detta luminosità della sorgente.

Questa relazione è valida <u>per ogni</u>r, <u>per la conservazione dell'energia</u> (ovvero se non ci sono processi di emissione o assorbimento della radiazione oltre a quelli nella sorgente).

Pertanto la luminosità di una sorgente L, è definita come:

 L_{v} = Energia emessa dalla sorgente nell'unità di tempo nell'intervallo di di frequenze v, $v+\Delta v$.

E' la quantità che meglio caratterizza una sorgente astrofisica, pertanto:

$$L_{v} = \frac{\Delta E_{em,v}}{\Delta t \Delta v}$$

Segue l'importante relazione alla superficie della sorgente (supposta sferica di raggio R):

$$L_{\nu} = 4\pi R^2 \mathcal{F}_{\nu}$$

dove \mathcal{F}_{v} è il flusso di radiazione alla superficie della stella!

Se integriamo su <u>tutte</u> le frequenze abbiamo quelle che sono dette le «**quantità bolometriche**»:

$$F = \int_{0}^{\infty} F_{\nu} d\nu \quad ; \quad L = \int_{0}^{\infty} L_{\nu} d\nu \quad ; \quad \mathcal{F} = \int_{0}^{\infty} \mathcal{F}_{\nu} d\nu$$

Quindi la relazione fondamentale:

$$L = 4\pi R^2 \mathcal{F}$$

Luminosità del Sole, L_{\odot} = 3.86×10²⁶J s⁻¹ Luminosità delle Stelle L ~10⁻⁴ -- 10⁶ L_{\odot} Luminosità delle Galassie L ~10⁹ -- 10¹³ L_{\odot}

La parola **magnitudine** (m) viene da "grandezza" (sostantivo), *magnitudo* in latino, in inglese *magnitude*. La definizione è quantitativa e precisamente legata al **flusso** (F) di energia che ci giunge dalla sorgente.

La definizione è la seguente:

$$m_{\nu} = -2.5 \log_{10} F_{\nu} + \text{costante}(\nu)$$

dove v è la frequenza della radiazione osservata.

Nel caso **bolometrico** (su tutte le frequenze) :

$$m = -2.5 \log_{10} F + \text{costante}$$

La scelta della <u>costante</u> è fatta misurando il flusso F_0 di una <u>stella di riferimento</u> e assegnando a essa <u>una magnitudine arbitraria</u> m_0 . Quindi:

$$m_{0\nu} = -2.5 \log_{10} F_{0\nu} + \text{costante}(\nu)$$

Pertanto:

$$m_{\nu} - m_{0\nu} = -2.5 \log_{10} \frac{F_{\nu}}{F_{0\nu}}$$

Lo stesso vale per la magnitudine bolometrica:

$$m - m_0 = -2.5 \log_{10} \frac{F}{F_0}$$

Si noti che:

Se F> $F_0 \Rightarrow m < m_0$ (Maggiore è il flusso minore è la magnitudine)

A m_{0v} = 0 nel visibile (v(visibile) = 5.45, 10¹⁴Hz) per la stella VEGA che presenta un flusso $F_{0v} \approx 3.03$, 10^{-9} J/sm².

Storicamente il« primo telescopio» è stato l'occhio umano. L'occhio riesce a rivelare in media ≈ 900 fotoni/s. Il diametro della pupilla d ≈ 5 mm=5, 10^{-3} m. Pertanto il **flusso minimo** (F_{minv}) che l'occhio può rivelare è dato da:

$$F_{\min \nu} = \frac{N_{fotoni/s}h\nu}{\pi \left(\frac{d}{2}\right)^2} = \frac{900 \cdot 6.626 \cdot 10^{-34} \cdot 5.45 \cdot 10^{14}}{\pi \left(\frac{5 \cdot 10^{-3}}{2}\right)^2} = 1.66 \cdot 10^{-11} \frac{J}{m^2 s}$$

dove h= 6,626, 10⁻³⁴ Js è la costante di Planck.

Pertanto la magnitudine visuale limite è data da:

$$m_{\lim \nu} = -2.5 \log_{10} \left(\frac{F_{\min \nu}}{F_{0\nu}} \right) = -2.5 \log_{10} \left(\frac{1.66 \cdot 10^{-11}}{3.03 \cdot 10^{-9}} \right) \approx 5.65$$

Un oggetto al limite visuale: la galassia di Andromeda

Il primo a classificare le stelle in 6 Grandezze, in base allo splendore (apparente), fu **Ipparco di Nicea** (190 –120 B.C.):

Le stelle di 1° grandezza sono le più luminose. Quelle di 6° sono le più deboli visibili a occhio nudo.

Norman Robert Pogson (1829 – 1891) nel 1856, per una convenienza matematica e perché William Herschel aveva notato (circa 1800) che <u>un cambiamento di 5 magnitudini corrisponde a un fattore di circa 100 nel flusso,</u> introduce il fattore -2.5.

I più grandi telescopi **ground-based** raggiungono mag ≈26.

Se introduciamo al posto del flusso <u>misurato al telescopio</u> F_{ν} quello <u>misurato alla superficie della sorgente</u> \mathcal{F}_{ν} possiamo notare che:

$$m_{\nu} = -2.5 \log_{10}(\frac{\mathcal{F}_{\nu}R^2}{r^2}) + \text{costante}(\nu)$$

e nel caso **bolometrico** (su tutte le frequenze) :

$$m = -2.5\log_{10}(\frac{\mathcal{F}R^2}{r^2}) + \text{costante}$$

La magnitudine (apparente) dipende dal flusso intrinseco della sorgente \mathcal{F}_{v} dalle sue dimensioni R (raggio) e dalla sua distanza r. Per poter confrontare le sorgenti in base al loro splendore intrinseco si definisce la **magnitudine assoluta** M_{v} come la magnitudine della stessa sorgente quando è posta ad una distanza r = 10pc (= 3.086×10¹⁶ m), quindi:

$$M_{\nu} = m_{\nu}(r = 10pc) = -2.5 \log_{10}(\frac{\mathcal{F}_{\nu}R^2}{100^2}) + \text{costante}(\nu)$$

pertanto sottraendo membro a membro con la relazione che dà m_v (r), si ottiene la notevole relazione:

$$M_{\nu} - m_{\nu} = 5 - 5 \log_{10} r$$

La differenza M_v - m_v è detta **MODULO DI DISTANZA**. La stessa relazione vale per le magnitudini bolometriche:

$$M - m = 5 - 5\log_{10} r$$

Qual'è la Magnitudine assoluta del Sole?

$$m_{\odot}$$
 = -26.85

$$r_{\odot}$$
 = 1AU = 1.496x10¹³cm = 4.849x10⁻⁶pc

$$M_{\odot} = m_{\odot} + 5.5*Log(r_{\odot}) \longrightarrow M_{\odot} = 4.72$$

Vediamo altri esempi:

Moon:
$$r_{Moon} = 2.57x10^{-3} AU = 1.25x10^{-8} pc$$

$$m_{Moon} = -12.6$$

$$M_{Moon} = +31.92$$

Sirio (
$$\alpha$$
 Canis Majoris): $r_{Sirio} = 2.64pc$ $M_{Sirio} = +1.42$ $m_{Sirio} = -1.47$

Prendiamo ad esempio Proxima Centauri (α Cen) e determiniamone la distanza:

Se vogliamo confrontare la luminosità di due oggetti dobbiamo considerare la loro magnitudine assoluta.

Prendiamo la magnitudine assoluta del Sole:

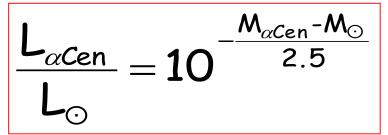
$$M_{\odot} = -2.5 \text{Log}(f_{\odot}) + \text{cost}$$

$$M_{\odot} = -2.5 \text{Log}(f_{\odot}) + \text{cost}$$

$$M_{\odot} = -2.5 \text{Log}\left(\frac{L_{\odot}}{4\pi (10 \text{pc})^2}\right) + \text{cost}$$

Allo stesso modo prendiamo la magnitudine assoluta di α Cen:

$$M_{\alpha Cen} = -2.5 Log \left(\frac{L_{\alpha Cen}}{4\pi (10pc)^2} \right) + cost$$


per cui:
$$M_{\alpha Cen} = M_{\odot} - 2.5 \text{Log} \left(\frac{L_{\alpha Cen}}{L_{\odot}}\right)$$

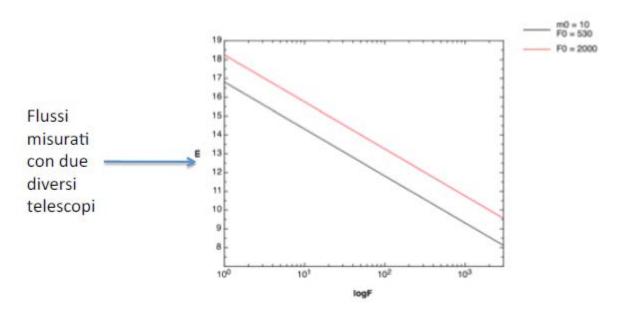
Quale sarà la luminosità di α Cen rispetto al Sole?

Noi sappiamo che L_{\odot} =3.83x10³³ erg/sec e dato che conosciamo le magnitudini assolute di α Cen e del Sole:

$$M_{\alpha Cen} = +4.4$$
 $M_{\odot} = +4.72$

$$L_{\alpha Cen} = 5.14 \times 10^{33} \text{ erg/sec}$$

Stella	Magnitudine Apparente	Magnitudine Assoluta	Luminosità [erg/sec]	Luminosità L/L _⊙	Distanza [pc]	Distanza r/r _⊙
Sirio	-1.47	1.42	8.00×10 ³⁴	20.89	2.64	5.4×10 ⁵
α Centauri	0.00	4.40	5.14×10 ³³	1.34	1.3	2.7×10 ⁵
Sole	-26.85	4.72	3.83×10 ³³	1	4.85×10 ⁻⁶	1
Luna	-12.6	31.92	5.05×10 ²²	1.3×10 ⁻¹¹	1.25×10 ⁻⁸	2.6×10 ⁻³


Nelle formule precedenti date sono implicite le seguenti notevoli ipotesi fisiche:

a) Lo spazio fisico è Euclideo

b) Lo spazio fisico non è soggetto ad espansione

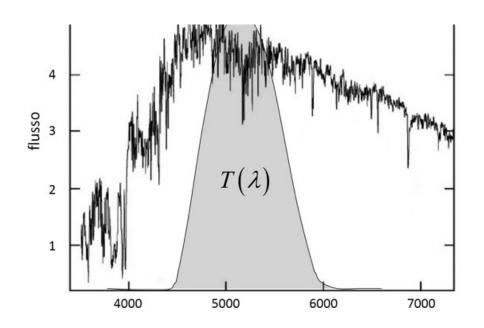
Queste ipotesi sono verificate per oggetti relativamente vicini, come le stelle della nostra galassia. Per oggetti molto distanti, il **redshift cosmologico** dovuto alla <u>legge di Hubble</u>, e la **Relatività Generale** complicano il calcolo e rendono necessario aggiungere alla formula una <u>correzione</u> K.

D'altra parte il flusso F_v di radiazione che arriva al telescopio dipende dall'apparato sperimentale (<u>rivelatore</u>, <u>condizioni del cielo</u> (seeing), <u>assorbimento atmosferico</u>, <u>assorbimento interstellare</u> , etc.) cioè è **filtrata** sia per <u>cause naturali</u> (assorbimento interstellare e atmosferico) sia <u>artificialmente</u> (efficienza quantica dello strumento, assorbimento delle ottiche)

Per questo motivo viene definito il **flusso strumentale** f_{veff} definito come segue:

$$f_{strum} = \frac{\int_{0}^{\infty} T(v)F(v)dv}{\int_{0}^{\infty} T(v)dv}$$

con $T(v) \equiv$ funzione filtro di banda fotometrica (<u>Trasmissione</u>)

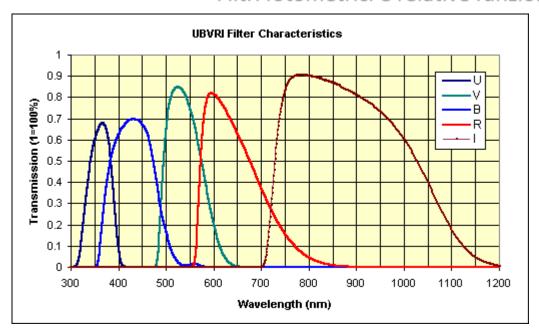

T(v) riassume l'azione di filtraggio sia dovuta sia a cause naturali che a cause artificiali dovute al telescopio.

Viene definita inoltre la $v_{eff} \equiv$ frequenza efficace o baricentro delle banda fotometrica

$$v_{veff} = \frac{\int_{0}^{\infty} vT(v)F(v)dv}{\int_{0}^{\infty} vT(v)dv}$$

Quindi risulta che approssimativamente:

$$f_{strum} = \frac{\int_{0}^{\infty} T(v)F(v)dv}{\int_{0}^{\infty} T(v)dv} \cong F_{veff}$$


e quindi per la magnitudine risulta:

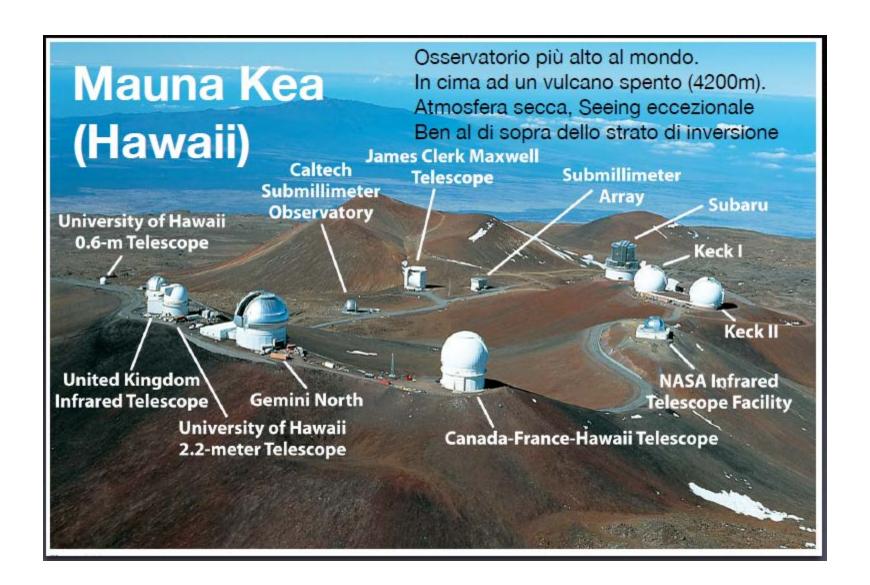
$$m_{veff} = -2.5 \log_{10} F_{veff} + \text{costante}(v_{eff})$$

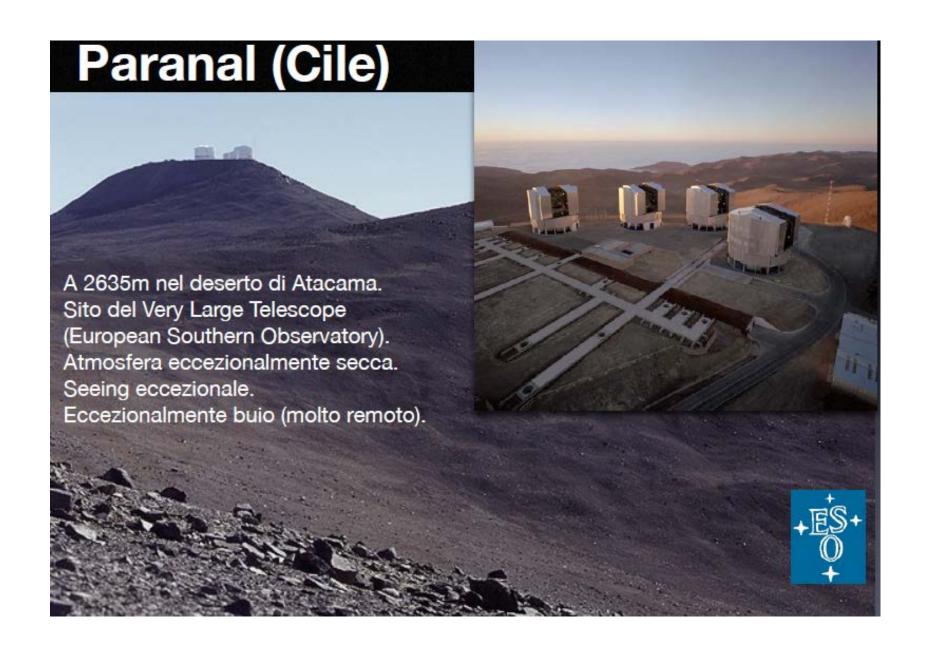
Esistono molti sistemi fotometrici (insieme di bande/filtri) dove, in genere la bande spettrali vengono scelte in base all'assorbimento atmosferico.

Spesso la funzione filtro di banda è indicata con P(v) che differisce da T(v) in quanto non viene considerato l'assorbimento interstellare. Si noti che T(v) (o P(v)) sono funzioni che presentano un massimo pronunciato ($\approx v_{eff}$) e un ristretto intervallo (ampiezza di banda) in frequenza ($\Delta v = v_2 - v_1$) o in lunghezza d'onda ($\Delta \lambda = \lambda_2 - \lambda_1$) per cui T \neq 0 (o P \neq 0).

Filtri fotometrici e relative funzioni di trasmissione

Filtro	λ (max)	Δλ (range)	
	[nm]	[nm]	
U	350	70	
В	435	100	
V	555	80	
R	680	150	
I	800	150	


Diversi sistemi fotometrici ("**filtri standard**") sono stati sviluppati in diversi osservatori. Ovviamente, bisogna anche costruire <u>leggi di trasformazione</u> tra un sistema fotometrico ed un altro per poter confrontare le osservazioni.


Gli Osservatori a terra sono costruiti in posti remoti sulla cima delle montagne: per evitare <u>l'inquinamento luminoso</u>; per stare <u>al disopra dello strato di inversione</u> (dove si formano le nuvole "basse"),per avere <u>un'atmosfera secca</u> (minore assorbimento), per avere <u>buon seeing</u>.

VLT - Paranal, Deserto di Atacama, Cile (2635 m) Keck - Mauna Kea, Hawai, USA (4200 m) TNG - La Palma, Canarie (2400 m).

Inquinamento luminoso

Riferimenti

- M. Capaccioli Lezioni di Astrofisica Università Federico II -Napoli
- V. Castellani **Astrofisica Stellare** Zanichelli Bologna
- A. Bersanelli **Lezioni di Astronomia** Università di Milano
- A. Marconi **Lezioni di Astrofisica** Università di Firenze
- G. Giuliani e I. Bonizzoni **Lineamenti di Elettromagnetismo** La Goliardica Pavese
- F. Selleri **Lezioni di Istituzioni di fisica teorica** Università di Bari